首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
FAK (focal adhesion kinase)-mediated signalling reportedly suppresses caspase-8 activation and, as a consequence, rescues epithelial cells from Fas-mediated anoikis. Critical was the use of a HOSCC (human oesophageal squamous carcinoma) cell line harbouring mt (mutant) p53-R175H and displaying resistance to detachment and Tyr397 dephosphorylation of FAK. Here we show, although caspase-8 activation is delayed in the mt p53-R175H cell line, comparable apoptotic events evidenced in the wt (wild type) p53 HOSCC cell lines could be induced in the mt p53-R175H cell line by strengthening the apoptotic stimulus. Significant to anoikis-related regulation, the delay in caspase-8 activation was accompanied by the maintenance of FAK Tyr397 phosphorylation, integrin β1-associated FAK and a FAK/caspase-8 complex. Thus, mt p53-R175H may desensitize tumours to Fas-mediated anchorage-independent death via a FAK-dependent mechanism.  相似文献   

2.
Seung-Oe Lim  Guhung Jung 《FEBS letters》2010,584(11):2231-4271
The tumor suppressor protein p53 is a key regulator of cell cycle arrest and apoptosis. Snail protein regulates cancer-associated malignancies. However, the relationship between p53 and Snail proteins in hepatocellular carcinoma (HCC) has not been completely understood. To determine whether Snail and p53 contribute to hepatocarcinogenesis, we analyzed the expression of Snail proteins in p53-overexpressing HCC cells. We found that p53 wild-type (WT) induced the degradation of Snail protein via murine double minute 2-mediated ubiquitination, whereas p53 mutant did not induce Snail degradation. As we expected, only p53WT induced endogenous Snail protein degradation and inhibited tumor cell invasion. These findings contribute to a better understanding of the role of p53 mutation and Snail overexpression as a late event in hepatocarcinogenesis.

Structured summary

MINT-7718917: p53 (uniprotkb:P04637) physically interacts (MI:0915) with Snai1 (uniprotkb:O95863) by anti bait coimmunoprecipitation (MI:0006)MINT-7719877: Snai1 (uniprotkb:O95863) physically interacts (MI:0915) with ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7718928: Snai1 (uniprotkb:O95863) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7718939: Snai1 (uniprotkb:O95863) physically interacts (MI:0915) with MDM2 (uniprotkb:Q00987) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

3.
Sylvia S. Dias 《FEBS letters》2009,583(22):3543-3548
The E3 ubiqutin ligase, murne double-minute clone 2 (MDM2), promotes the degradation of p53 under normal homeostatic conditions. Several serine residues within the acidic domain of MDM2 are phosphorylated to maintain its activity but become hypo-phosphorylated following DNA damage, leading to inactivation of MDM2 and induction of p53. However, the signalling pathways that mediate these phosphorylation events are not fully understood. Here we show that the oncogenic and cell cycle-regulatory protein kinase, polo-like kinase-1 (PLK1), phosphorylates MDM2 at one of these residues, Ser260, and stimulates MDM2-mediated turnover of p53. These data are consistent with the idea that deregulation of PLK1 during tumourigenesis may help suppress p53 function.

Structured summary

MINT-7266353: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by pull down (MI:0096)MINT-7266344, MINT-7266329: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by anti bait coimmunoprecipitation (MI:0006)MINT-7266250: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) p53 (uniprotkb:P04637) by protein kinase assay (MI:0424)MINT-7266241, MINT-7266318: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:P23804) by protein kinase assay (MI:0424)MINT-7266231, MINT-7266805, MINT-7266264, MINT-7266299: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)  相似文献   

4.
5.
The KRAB-type zinc-finger protein Apak (ATM and p53 associated KZNF protein) specifically suppresses p53-mediated apoptosis. Upon DNA damage, Apak is phosphorylated and inhibited by ATM kinase, resulting in p53 activation. However, how Apak is regulated in response to oncogenic stress remains unknown. Here we show that upon oncogene activation, Apak is inhibited in the tumor suppressor ARF-dependent but ATM-independent manner. Oncogene-induced ARF protein directly interacts with Apak and competes with p53 to bind to Apak, resulting in Apak dissociation from p53. Thus, Apak is differentially regulated in the ARF and ATM-dependent manner in response to oncogenic stress and DNA damage, respectively.

Structured summary

MINT-7989670: p53 (uniprotkb:P04637) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989812: HDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989603, MINT-7989626: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989653: ARF (uniprotkb:Q8N726-1) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989686, MINT-7989705, MINT-7989747:APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7989724: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0914) with ARF (uniprotkb:Q8N726-1) and p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7989635: ARF (uniprotkb:Q8N726-1) and APAK (uniprotkb:Q8TAQ5) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7989584, MINT-7989773: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

6.
Here we show that 14-3-3 proteins bind to Pim kinase-phosphorylated Ser166 and Ser186 on the human E3 ubiquitin ligase mouse double minute 2 (Mdm2), but not protein kinase B (PKB)/Akt-phosphorylated Ser166 and Ser188. Pim-mediated phosphorylation of Ser186 blocks phosphorylation of Ser188 by PKB, indicating potential interplay between the Pim and PKB signaling pathways in regulating Mdm2. In cells, expression of Pim kinases promoted phosphorylation of Ser166 and Ser186, interaction of Mdm2 with endogenous 14-3-3s and p14ARF, and also increased the amount of Mdm2 protein by a mechanism that does not require Pim kinase activities. The implications of these findings for regulation of the p53 pathway, oncogenesis and drug discovery are discussed.

Structured summary

MINT-6823587:PIM3 (uniprotkb:Q86V86) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823623:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with p14ARF (uniprotkb:Q8N7268N726) by coimmunoprecipitation (MI:0019)MINT-6823537:PKB (uniprotkb:P31749) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823574:PIM2 (uniprotkb:QP1W9) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823555:PIM1 (uniprotkb:P11309)P phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)  相似文献   

7.
mdm2 and mdmx oncogenes play essential yet non-redundant roles in synergistic inactivation of the tumor suppressor, p53. While Mdm2 inhibits p53 activity mainly by augmenting its ubiquitination, the functional role of Mdmx on p53 ubiquitination remains obscure. In transfected H1299 cells, Mdmx augmented Mdm2-mediated ubiquitination of p53. In in vitro ubiquitination assays, the Mdmx/Mdm2 heteromeric complex, in comparison to the Mdm2 homomer, showed enhanced ubiquitinase activity toward p53 and the reduced auto-ubiquitination of Mdm2. Alteration of the substrate specificity via binding to Mdmx may contribute to efficient ubiquitination and inactivation of p53 by Mdm2.

Structured summary

MINT-7219995: P53 (uniprotkb:P04637) physically interacts (MI:0914) with Ubiquitin (uniprotkb:P62988) by anti bait coimmunoprecipitation (MI:0006)MINT-7220023: Ubiquitin (uniprotkb:P62988) physically interacts (MI:0914) with P53 (uniprotkb:P04637) by pull down (MI:0096)  相似文献   

8.
Gong X  Liu A  Ming X  Deng P  Jiang Y 《FEBS letters》2010,584(23):4711-4716
p53 plays a fundamental role in the maintenance of genome integrity after DNA damage, deciding whether cells repair and live, or die. However, the rules that govern its choice are largely undiscovered. Here we show that the functional relationship between p38 and p53 is crucial in defining the cell fate after DNA damage. Upon low dose ultraviolet (UV) radiation, p38 and p53 protect the cells from apoptosis separately. Conversely, they function together to favor apoptosis upon high dose UV exposure. Taken together, a UV-induced, dose-dependent interaction between p38 and p53 acts as a switch to determine cell fate.

Structured summary

MINT-8050838: p53 (uniprotkb:P02340) physically interacts (MI:0915) with p38 (uniprotkb:P47811) by anti bait coimmunoprecipitation (MI:0006)MINT-8050948: p53 (uniprotkb:P04637) physically interacts (MI:0915) with p38 (uniprotkb:P47811) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

9.
The p53 tumour suppressor protein is tightly controlled by the E3 ubiquitin ligase, mouse double minute 2 (MDM2), but maintains MDM2 expression as part of a negative feedback loop. We have identified the immunophilin, 25 kDa FK506-binding protein (FKBP25), previously shown to be regulated by p53-mediated repression, as an MDM2-interacting partner. We show that FKBP25 stimulates auto-ubiquitylation and proteasomal degradation of MDM2, leading to the induction of p53. Depletion of FKBP25 by siRNA leads to increased levels of MDM2 and a corresponding reduction in p53 and p21 levels. These data are consistent with the idea that FKBP25 contributes to regulation of the p53-MDM2 negative feedback loop.

Structured summary

MINT-6823686:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by anti bait coimmunoprecipitation (MI:0006)MINT-6823707, MINT-6823722:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q62446) by pull down (MI:0096)MINT-6823775:P53 (uniprotkb:Q04637) physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by anti bait coimmunoprecipitation (MI:0006)MINT-6823735, MINT-6823749:FKBP25 (uniprotkb:Q62446) binds (MI:0407) to MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823761:Ubiquitin (UNIPROTKB:62988)P physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823669:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by two hybrid (MI:0018)  相似文献   

10.
In this study, we identified p53 as a novel TCTP-interacting protein using TCTP as bait. Also, we determined the critical binding sites between TCTP and p53. To elucidate the functional consequence of the interaction, we developed the overexpression and inhibition system of TCTP and p53 expression. Overexpression of TCTP in lung carcinoma cells reversed p53 mediated apoptosis and inhibition of TCTP expression by small interfering RNA increased apoptosis of lung carcinoma cells. Moreover, it was observed that TCTP overexpression promotes degradation of p53. These results clearly indicate that the interaction between TCTP and p53 prevents apoptosis by destabilizing p53. Thus, TCTP acts as a negative regulator of apoptosis in lung cancer.

Structured summary

MINT-8057107, MINT-8057116: p53 (uniprotkb:P04637) physically interacts (MI:0915) with TCTP (uniprotkb:P13693) by anti bait coimmunoprecipitation (MI:0006)MINT-8057141: TCTP (uniprotkb:P13693) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by two hybrid pooling approach (MI:0398)MINT-8057126: p53 (uniprotkb:P04637) physically interacts (MI:0915) with TCTP (uniprotkb:P13693) by anti tag coimmunoprecipitation (MI:0007) MINT-8057160: TCTP (uniprotkb:P13693) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by two hybrid (MI:0018)  相似文献   

11.
Ohad Iosefson 《FEBS letters》2010,584(6):1080-1084
Previous studies have shown that the mammalian mitochondrial 70 kDa heat-shock protein (mortalin) can also be detected in the cytosol. Cytosolic mortalin binds p53 and by doing so, prevents translocation of the tumor suppressor into the nucleus. In this study, we developed a novel binding assay, using purified proteins, for tracking the interaction between p53 and mortalin. Our results reveal that: (i) P53 binds to the peptide-binding site of mortalin which enhances the ability of the former to bind DNA. (ii) An additional previously unknown binding site for mortalin exists within the C-terminal domain of p53.

Structured summary

MINT-7557591: p53 (uniprotkb:P04637) binds (MI:0407) to DnaK (uniprotkb:P0A6Y8) by affinity chromatography technology (MI:0004)MINT-7557644: mortalin (uniprotkb:P38646) binds (MI:0407) to p53 (uniprotkb:P04637) by pull down (MI:0096)MINT-7557580, MINT-7557611: p53 (uniprotkb:P04637) binds (MI:0407) to mortalin (uniprotkb:P38646) by affinity chromatography technology (MI:0004)  相似文献   

12.
The adaptor protein 14-3-3 binds to and stabilizes the tumor suppressor p53 and enhances its anti-tumour activity. In the regulatory C-terminal domain of p53 several 14-3-3 binding motifs have been identified. Here, we report the crystal structure of the extreme C-terminus (residues 385-393, p53pT387) of p53 in complex with 14-3-3σ at a resolution of 1.28 Å. p53pT387 is accommodated by 14-3-3 in a yet unrecognized fashion implying a rationale for 14-3-3 binding to the active p53 tetramer. The structure exhibits a potential binding site for small molecules that could stabilize the p53/14-3-3 protein complex suggesting the possibility for therapeutic intervention.

Structured summary

MINT-7711943: 14-3-3 sigma (uniprotkb:P31947) and p53 (uniprotkb:P04637) bind (MI:0407) by X-ray crystallography (MI:0114)MINT-7711931: 14-3-3 sigma (uniprotkb:P31947) and p53 (uniprotkb:P04637) bind (MI:0407) by isothermal titration calorimetry (MI:0065)  相似文献   

13.
14.
15.
The constitutive activation of the Janus kinase 2 (JAK2) and mutation of the p53 tumor suppressor are both detected in human cancer. We examined the potential regulation of JAK2 phosphorylation by wild-type (wt) p53 in human ovarian cancer cell lines, Caov-3 and MDAH2774, which harbor mutant form of p53 tumor suppressor gene and high levels of phosphorylated JAK2. The wt p53 gene was re-introduced into the cells using an adenovirus vector. In addition to wt p53, mutant p53 22/23, mutant p53-175, and NCV (negative control virus) were introduced into the cells in the control groups. Expression of wt p53, but not that of p53-175 mutant, diminished JAK2 tyrosine phosphorylation in MDAH2774 and Caov-3 cell lines. Expression of wt p53 or p53 22/23 mutant did not cause a reduction in the phosphorylation of unrelated protein kinases, ERK1 and ERK2 (ERK1/2). The inhibition of JAK2 tyrosine phosphorylation can be reversed by tyrosine phosphatase inhibitor, sodium orthovanadate. Protein tyrosine phosphatase 1-B levels increased with introduction of wt p53 and may be involved in the dephosphorylation of JAK2. These findings present a possible p53-dependent cellular process of modulating JAK2 tyrosine phosphorylation in ovarian cancer cell lines.  相似文献   

16.
Missense mutations in TP53 resulting in the expression of p53-R175H, p53-R273H, or p53-R280K are frequently detected in human breast cancer. Currently, the role of mutant p53-R280K in breast cancer is relatively unknown, and therefore, the present study analyzed the function of mutant p53-R280K in breast cancer cell growth. To this end, we used small interfering RNA to study the role of mutant p53-R280K in MDA-MB-231 cells, which endogenously express the mutant protein. We found that curcumin induced apoptosis in MDA-MB-231 cells and downregulated mutant p53-R280K. We also observed that knockdown of mutant p53 by small interfering RNA induced apoptosis in MDA-MB-231 cells. Curcumin-induced apoptosis was further enhanced by the overexpression of wild-type p53, but was decreased by mutant p53-R280K overexpression. Our findings indicate that mutant p53-R280K has an important role in mediating the survival of triple-negative breast cancer MDA-MB-231 cells. Furthermore, this study suggests mutant p53-R280K could be used as a therapeutic target for breast cancer cells harboring this TP53 missense mutation.  相似文献   

17.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

18.
Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]  相似文献   

19.
We demonstrated that exogenous pyruvate promotes survival under glucose depletion in aerobic mutant p53 (R175H) human melanoma cells. Others subsequently indicated that mutant p53 tumor cells undergo p53 degradation and cell death under aerobic glucose-free conditions. Since glucose starvation occurs in hypoxic gradients of poorly vascularized tumors, we investigated the role of p53 siRNA under hypoxia in wt p53 C8161 melanoma using glucose starvation or 5 mM physiological glucose. p53 Silencing decreased survival of glucose-starved C8161 melanoma with pyruvate supplementation under hypoxia (?1% oxygen), but increased resistance to glycolytic inhibitors oxamate and 2-deoxyglucose in 5 mM glucose, preferentially under normoxia. Aiming to counteract hypoxic tumor cell survival irrespective of p53 status, genetically-matched human C8161 melanoma harboring wt p53 or mutant p53 (R175H) were used combining true hypoxia (?1% oxygen) and hypoxia mimetic CoCl2. No significant decrease in metabolic activity was evidenced in C8161 melanoma irrespective of p53 status in 2.5 mM glucose after 48 h of physical hypoxia. However, combining the latter with 100 μM CoCl2 was preferentially toxic for mutant p53 C8161 melanoma, and was enhanced by catalase in wt p53 C8161 cells. Downregulation of MnSOD and LDHA accompanied the toxicity induced by hypoxia and CoCl2 in 5 mM glucose, and these changes were enhanced by oxamate or 2-deoxyglucose. Our results show for the first time that survival of malignant cells in a hypoxic microenvironment can be counteracted by hypoxia mimetic co-treatment in a p53 dependent manner.  相似文献   

20.
The phytocannabinoid Δ9-Tetrahydrocannabinol (Δ9-THC), the main psychoactive cannabinoid in cannabis, activates a number of signalling cascades including p53. This study examines the role of Δ9-THC in regulating the p53 post-translational modifier proteins, Murine double minute (Mdm2) and Small Ubquitin-like MOdifier protein 1 (SUMO-1) in cortical neurons. Δ9-THC increased both Mdm2 and SUMO-1 protein expression and induced the deSUMOylation of p53 in a cannabinoid receptor type 1 (CB1)-receptor dependent manner. We demonstrate that Δ9-THC decreased the SUMOylation of the CB1 receptor. The data reveal a novel role for cannabinoid receptor activation in modulating the SUMO regulatory system.

Structured summary

MINT-7266621: Cb1 (uniprotkb:P20272) physically interacts (MI:0915) with SUMO-1 (uniprotkb:Q5I0H3) by anti bait coimmunoprecipitation(MI:0006)MINT-7266633: SUMO-1 (uniprotkb:Q5I0H3) and Cb1 (uniprotkb:P20272) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7266611: p53 (uniprotkb:P10361) physically interacts (MI:0915) with SUMO-1 (uniprotkb:Q5I0H3) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号