首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombospondin-1 regulates nitric oxide (NO) signaling in vascular cells via CD47. Because CD47 binding motifs are conserved in the C-terminal signature domains of all five thrombospondins and indirect evidence has implied CD47 interactions with other family members, we compared activities of recombinant signature domains of thrombospondin-1, -2, and -4 to interact with CD47 and modulate cGMP signaling. Signature domains of thrombospondin-2 and -4 were less active than that of thrombospondin-1 for inhibiting binding of radiolabeled signature domain of thrombospondin-1 or SIRPα (signal-regulatory protein) to cells expressing CD47. Consistent with this binding selectivity, the signature domain of thrombospondin-1 was more potent than those of thrombospondin-2 or -4 for inhibiting NO-stimulated cGMP synthesis in vascular smooth muscle cells and downstream effects on cell adhesion. In contrast to thrombospondin-1- and CD47-null cells, primary vascular cells from thrombospondin-2-null mice lack enhanced basal and NO-stimulated cGMP signaling. Effects of endogenous thrombospondin-2 on NO/cGMP signaling could be detected only in thrombospondin-1-null cells. Furthermore, tissue survival of ischemic injury and acute recovery of blood flow in thrombospondin-2-nulls resembles that of wild type mice. Therefore, thrombospondin-1 is the dominant regulator of NO/cGMP signaling via CD47, and its limiting role in acute ischemic injury responses is not shared by thrombospondin-2.Nitric oxide (NO) is a major mediator of intracellular and paracellular signal transduction. NO preserves vascular health by minimizing the adhesion of inflammatory cells to the vessel wall, limiting platelet activation, and increasing blood vessel diameter and blood flow by relaxing vascular smooth muscle cells (VSMC).3 These actions of NO are mediated by activating soluble isoforms of guanylate cyclase (sGC) to increase cGMP levels, resulting in downstream activation of cGMP-dependent protein kinases and ion channels (1).Physiological NO/cGMP signaling is limited by several phosphodiesterases that degrade cGMP and by thrombospondin-1 (TSP). TSP1 is a secreted protein that is produced by vascular and inflammatory cells that regulates cellular behavior by engaging several cell surface receptors. Recently we reported that TSP1 potently blocks NO-stimulated prosurvival responses in endothelial and VSMC (2, 3). TSP1 also plays a role in promoting platelet thrombus formation and hemostasis by antagonizing the antithrombotic activity of NO (4). In all of these vascular cells, picomolar concentrations of TSP1 are sufficient to block NO-stimulated fluxes in cGMP by engaging its receptor CD47 (5). Nanomolar concentrations of TSP1 further inhibit the same signaling pathway by inhibiting CD36-mediated uptake of myristate into vascular cells (6). In vivo, mice lacking TSP1 demonstrate elevated basal tissue cGMP levels and greater increases in regional blood flow in response to a NO challenge than wild type controls (4). After an ischemic insult, the absence of TSP1 or CD47 in transgenic mice is associated with better maintenance of tissue perfusion and enhanced tissue survival. Similarly, targeting TSP1 or CD47 using function blocking antibodies enhances ischemic tissue perfusion and survival in wild type mice and pigs (7, 8).TSP1 belongs to a family of five secreted glycoproteins that share an evolutionarily conserved C-terminal signature domain (9). TSP1 and TSP2 form a distinct subfamily of trimeric proteins that exhibit similar anti-angiogenic activities for endothelial cells in vitro and activities in vivo to block tumor growth. Despite their similarities in structure, TSP1 and TSP2 have markedly different expression patterns after tissue injury, with TSP1 being immediately expressed and maximal at day 3, whereas TSP2 was not expressed until day 7 and was maximal 10 days after injury (10). In addition, large amounts of TSP1 but not TSP2 are stored in platelet α-granules and released into the wound environment. Polymorphisms in TSP1 and TSP2 have been linked to altered risk of premature myocardial infarction (11, 12). A 3′-untranslated region polymorphism in TSP2 is also associated with type 2 diabetes in men (13). The molecular basis for these associations is unclear.Less is known about the roles of the pentameric TSP3–5 in vascular cells. TSP3 and TSP5 (also known as cartilage oligomeric matrix protein) appear to serve their primary functions in bone development (14, 15). However, a polymorphism in TSP4 is associated with premature myocardial infarcts in certain populations (11, 16, 17). A proatherogenic activity for the A387P variant of TSP4 was proposed based on its differential ability to modulate proliferation of endothelial and VSMC (18). Cardiovascular functions of TSP4 may also be linked to the high expression of TSP4 in heart (19) and its altered expression in that tissue during hypertensive heart failure (20).The C-terminal domain of TSP1 is sufficient to mediate CD47-dependent inhibition of cGMP signaling (5). Of the two CD47 binding VVM motifs identified in this domain of TSP1, the first is conserved among all five TSPs, suggesting that CD47 binding could be a universal attribute of this family (21). Based on structural evidence that the VVM motifs may not be accessible (22, 23), however, conservation of VVM motifs may not be sufficient to predict CD47 binding. Uncertainty regarding the location of the CD47 binding site in the G domain of TSP1 therefore limits interpretation of the known sequence homology to predict CD47 binding to other TSP family members.Although CD47 recognition of other TSPs has not been demonstrated experimentally, a local deficiency of inflammation-associated T cell apoptosis shared by TSP1-, CD47-, and TSP2-null mice is consistent with this hypothesis (24). Furthermore, a 21-residue peptide from the C-terminal domain of TSP4 was found to decrease human umbilical vein endothelial cell proliferation similar to the CD47 binding peptides from TSP1, although it lacks the VVM motif and no interaction with CD47 was demonstrated (25).To directly address whether other TSP family members can inhibit NO responses and signaling in vascular cells, we now compare binding of recombinant signature domains of TSP1, TSP2, and TSP4 to cell surface CD47 and inhibition of NO-stimulated cell responses and cGMP signaling by these domains. We also compared acute tissue blood flow and perfusion responses to ischemic challenge in TSP1 and TSP2-null mice and cGMP responses in primary cultures of vascular cells isolated from these mice. These studies clearly demonstrate that CD47 selectively interacts with TSP1 and that the signature domains of TSP2 and TSP4 are less potent inhibitors of NO signaling in vascular cells in vitro. Furthermore, we show that the role of TSP1 to acutely limit recovery from ischemic injury in vivo is not shared by TSP2.  相似文献   

2.
Although CD36 is generally recognized to be an inhibitory signaling receptor for thrombospondin-1 (TSP1), the molecular mechanism for transduction of this signal remains unclear. Based on evidence that myristic acid and TSP1 each modulate endothelial cell nitric oxide signaling in a CD36-dependent manner, we examined the ability of TSP1 to modulate the fatty acid translocase activity of CD36. TSP1 and a CD36 antibody that mimics the activity of TSP1 inhibited myristate uptake. Recombinant TSP1 type 1 repeats were weakly inhibitory, but an anti-angiogenic peptide derived from this domain potently inhibited myristate uptake. This peptide also inhibited membrane translocation of the myristoylated CD36 signaling target Fyn and activation of Src family kinases. Myristate uptake stimulated cGMP synthesis via endothelial nitric-oxide synthase and soluble guanylyl cyclase. CD36 ligands blocked myristate-stimulated cGMP accumulation in proportion to their ability to inhibit myristate uptake. TSP1 also inhibited myristate-stimulated cGMP synthesis by engaging its receptor CD47. Myristate stimulated endothelial and vascular smooth muscle cell adhesion on type I collagen via the NO/cGMP pathway, and CD36 ligands that inhibit myristate uptake blocked this response. Therefore, the fatty acid translocase activity of CD36 elicits proangiogenic signaling in vascular cells, and TSP1 inhibits this response by simultaneously inhibiting fatty acid uptake via CD36 and downstream cGMP signaling via CD47.  相似文献   

3.
Thrombospondin-1 (TSP1) can inhibit angiogenic responses directly by interacting with VEGF and indirectly by engaging several endothelial cell TSP1 receptors. We now describe a more potent mechanism by which TSP1 inhibits VEGF receptor-2 (VEGFR2) activation through engaging its receptor CD47. CD47 ligation is known to inhibit downstream signaling targets of VEGFR2, including endothelial nitric-oxide synthase and soluble guanylate cyclase, but direct effects on VEGFR2 have not been examined. Based on FRET and co-immunoprecipitation, CD47 constitutively associated with VEGFR2. Ligation of CD47 by TSP1 abolished resonance energy transfer with VEGFR2 and inhibited phosphorylation of VEGFR2 and its downstream target Akt without inhibiting VEGF binding to VEGFR2. The inhibitory activity of TSP1 in large vessel and microvascular endothelial cells was replicated by a recombinant domain of the protein containing its CD47-binding site and by a CD47-binding peptide derived from this domain but not by the CD36-binding domain of TSP1. Inhibition of VEGFR2 phosphorylation was lost when CD47 expression was suppressed in human endothelial cells and in murine CD47-null cells. These results reveal that anti-angiogenic signaling through CD47 is highly redundant and extends beyond inhibition of nitric oxide signaling to global inhibition of VEGFR2 signaling.  相似文献   

4.
Nitric oxide (NO) locally regulates vascular resistance and blood pressure by modulating blood vessel tone. Thrombospondin-1 signaling via its receptor CD47 locally limits the ability of NO to relax vascular smooth muscle cells and increase regional blood flow in ischemic tissues. To determine whether thrombospondin-1 plays a broader role in central cardiovascular physiology, we examined vasoactive stress responses in mice lacking thrombospondin-1 or CD47. Mice lacking thrombospondin-1 exhibit activity-associated increases in heart rate, central diastolic and mean arterial blood pressure and a constant decrease in pulse pressure. CD47-deficient mice have normal central pulse pressure but elevated resting peripheral blood pressure. Both null mice show exaggerated decreases in peripheral blood pressure and increased cardiac output and ejection fraction in response to NO. Autonomic blockade also induces exaggerated hypotensive responses in awake thrombospondin-1 null and CD47 null mice. Both null mice exhibit a greater hypotensive response to isoflurane, and autonomic blockage under isoflurane anesthesia leads to premature death of thrombospondin-1 null mice. Conversely, the hypertensive response to epinephrine is attenuated in thrombospondin-1 null mice. Thus, the matricellular protein thrombospondin-1 and its receptor CD47 serve as acute physiological regulators of blood pressure and exert a vasopressor activity to maintain global hemodynamics under stress.  相似文献   

5.
Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.  相似文献   

6.
Tissue ischemia and ischemia–reperfusion (I/R) remain sources of cell and tissue death. Inability to restore blood flow and limit reperfusion injury represents a challenge in surgical tissue repair and transplantation. Nitric oxide (NO) is a central regulator of blood flow, reperfusion signaling and angiogenesis. De novo NO synthesis requires oxygen and is limited in ischemic vascular territories. Nitrite (NO2?) has been discovered to convert to NO via heme-based reduction during hypoxia, providing a NO synthase independent and oxygen-independent NO source. Furthermore, blockade of the matrix protein thrombospondin-1 (TSP1) or its receptor CD47 has been shown to promote downstream NO signaling via soluble guanylate cyclase (sGC) and cGMP-dependant kinase. We hypothesized that nitrite would provide an ischemic NO source that could be potentiated by TSP1–CD47 blockade enhancing ischemic tissue survival, blood flow and angiogenesis. Both low dose nitrite and direct blockade of TSP1–CD47 interaction using antibodies or gene silencing increased acute blood flow and late tissue survival in ischemic full thickness flaps. Nitrite and TSP1 blockade both enhanced in vitro and in vivo angiogenic responses. The nitrite effect could be abolished by inhibition of sGC and cGMP signaling. Potential therapeutic synergy was tested in a more severe ischemic flap model. We found that combined therapy with nitrite and TSP1–CD47 blockade enhanced flap perfusion, survival and angiogenesis to a greater extent than either agent alone, providing approximately 100% flap survival. These data provide a new therapeutic paradigm for hypoxic NO signaling through enhanced cGMP mediated by TSP1–CD47 blockade and nitrite delivery.  相似文献   

7.
CD47, a receptor for thrombospondin-1, limits two important regulatory axes: nitric oxide-cGMP signaling and cAMP signaling, both of which can promote mitochondrial biogenesis. Electron microscopy revealed increased mitochondrial densities in skeletal muscle from both CD47 null and thrombospondin-1 null mice. We further assessed the mitochondria status of CD47-null vs WT mice. Quantitative RT-PCR of RNA extracted from tissues of 3 month old mice revealed dramatically elevated expression of mRNAs encoding mitochondrial proteins and PGC-1α in both fast and slow-twitch skeletal muscle from CD47-null mice, but modest to no elevation in other tissues. These observations were confirmed by Western blotting of mitochondrial proteins. Relative amounts of electron transport enzymes and ATP/O2 ratios of isolated mitochondria were not different between mitochondria from CD47-null and WT cells. Young CD47-null mice displayed enhanced treadmill endurance relative to WTs and CD47-null gastrocnemius had undergone fiber type switching to a slow-twitch pattern of myoglobin and myosin heavy chain expression. In 12 month old mice, both skeletal muscle mitochondrial volume density and endurance had decreased to wild type levels. Expression of myosin heavy chain isoforms and myoglobin also reverted to a fast twitch pattern in gastrocnemius. Both CD47 and TSP1 null mice are leaner than WTs, use less oxygen and produce less heat than WT mice. CD47-null cells produce substantially less reactive oxygen species than WT cells. These data indicate that loss of signaling from the TSP1-CD47 system promotes accumulation of normally functioning mitochondria in a tissue-specific and age-dependent fashion leading to enhanced physical performance, lower reactive oxygen species production and more efficient metabolism.  相似文献   

8.
Thrombospondin-1 is a potent suppressor of T cell activation via its receptor CD47. However, the precise mechanism for this inhibition remains unclear. Because H2S is an endogenous potentiator of T cell activation and is necessary for full T cell activation, we hypothesized that thrombospondin-1 signaling through CD47 inhibits T cell activation by antagonizing H2S signaling. Primary T cells from thrombospondin-1 null mice were more sensitive to H2S-dependent activation assessed by proliferation and induction of interleukin-2 and CD69 mRNAs. Exogenous thrombospondin-1 inhibited H2S responses in wild type and thrombospondin-1 null T cells but enhanced the same responses in CD47 null T cells. Fibronectin, which shares integrin and glycosaminoglycan binding properties with thrombospondin-1 but not CD47 binding, did not inhibit H2S signaling. A CD47-binding peptide derived from thrombospondin-1 inhibited H2S-induced activation, whereas two other functional sequences from thrombospondin-1 enhanced H2S signaling. Therefore, engaging CD47 is necessary and sufficient for thrombospondin-1 to inhibit H2S-dependent T cell activation. H2S stimulated T cell activation by potentiating MEK-dependent ERK phosphorylation, and thrombospondin-1 inhibited this signaling in a CD47-dependent manner. Thrombospondin-1 also limited activation-dependent T cell expression of the H2S biosynthetic enzymes cystathionine β-synthase and cystathionine γ-lyase, thereby limiting the autocrine role of H2S in T cell activation. Thus, thrombospondin-1 signaling through CD47 is the first identified endogenous inhibitor of H2S signaling and constitutes a novel mechanism that negatively regulates T cell activation.  相似文献   

9.
Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent M(r) > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent M(r) 230,000) and CD47 (apparent M(r) > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser(64) and Ser(79). Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser(64).  相似文献   

10.
We examined the regulation of alpha4beta1 integrin function in melanoma cells and T cells by ligands of CD47. A CD47 antibody (B6H12) that inhibited alphavbeta3-mediated adhesion of melanoma cells induced by CD47-binding peptides from thrombospondin-1 directly stimulated alpha4beta1-mediated adhesion of the same cells to vascular cell adhesion molecule-1 and N-terminal regions of thrombospondin-1 or thrombospondin-2. B6H12 also stimulated alpha4beta1- as well as alpha2beta1- and alpha5beta1-mediated adhesion of CD47-expressing T cells but not of CD47-deficient T cells. alpha4beta1 and CD47 co-purified as a detergent-stable complex on a CD47 antibody affinity column. CD47-binding peptides based on C-terminal sequences of thrombospondin-1 also specifically enhanced adhesion of melanoma cells and T cells to alpha4beta1 ligands. Unexpectedly, activation of alpha4beta1 function by the thrombospondin-1 CD47-binding peptides also occurred in CD47-deficient T cells. CD47-independent activation of alpha4beta1 required the Val-Val-Met (VVM) motif of the peptides and was sensitive to inhibition by pertussis toxin. These results indicate that activation of alpha4beta1 by the CD47 antibody B6H12 and by VVM peptides occurs by different mechanisms. The antibody directly activates a CD47-alpha4beta1 complex, whereas VVM peptides may target an unidentified Gi-linked receptor that regulates alpha4beta1.  相似文献   

11.
Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury.  相似文献   

12.
Cardiovascular homeostasis and health is maintained through the balanced interactions of cardiac generated blood flow and cross-talk between the cellular components that comprise blood vessels. Central to this cross-talk is endothelial generated nitric oxide (NO) that stimulates relaxation of the contractile vascular smooth muscle (VSMC) layer of blood vessels. In cardiovascular disease this balanced interaction is disrupted and NO signaling is lost. Work over the last several years indicates that regulation of NO is much more complex than previously believed. It is now apparent that the secreted protein thrombospondin-1 (TSP1), that is upregulated in cardiovascular disease and animal models of the same, on activating cell surface receptor CD47, redundantly inhibits NO production and NO signaling. This inhibitory event has implications for baseline and disease-related responses mediated by NO. Further work has identified that TSP1-CD47 signaling stimulates enzymatic reactive oxygen species (ROS) production to further limit blood flow and promote vascular disease. Herein consideration is given to the most recent discoveries in this regard which identify the TSP1-CD47 axis as a major proximate governor of cardiovascular health.  相似文献   

13.
Calcium (Ca2+) and cyclic GMP (cGMP) subserve antagonistic functions that are reflected in their coordinated reciprocal regulation in physiological systems. However, molecular mechanisms by which Ca2+ regulates cGMP-dependent signaling remain incompletely defined. In this study, the inhibition of recombinant nitric oxide (NO)-stimulated soluble guanylyl cyclase (SGC) by Ca2+ was demonstrated. The alpha- and beta-subunits of recombinant rat SGC were heterologously coexpressed in HEK 293 cells which do not express NO synthase, whose Ca2+-stimulated activity can confound the effects of that cation on SGC. Ca2+ inhibited basal and NO-stimulated SGC in a concentration- and guanine nucleotide-dependent fashion. This cation inhibited SGC in crude cell extracts and immunopurified preparations. Ca2+ lowered both the Vmax and Km of SGC via an uncompetitive mechanism through direct interaction with the enzyme. In intact HEK 293 cells, increases in the intracellular Ca2+ concentration induced by ionomycin, a Ca2+ ionophore, and thapsigargin, which releases intracellular stores of that cation, inhibited NO-stimulated intracellular cGMP accumulation. Similarly, carbachol-induced elevation of the intracellular Ca2+ concentration inhibited NO-stimulated intracellular cGMP accumulation in HEK 293 cells. These data demonstrate that SGC behaves as a sensitive Ca2+ detector that may play a central role in coordinating the reciprocal regulation of Ca2+- and cGMP-dependent signaling mechanisms.  相似文献   

14.
McDonald JF  Dimitry JM  Frazier WA 《Biochemistry》2003,42(33):10001-10011
Two VVM-containing peptides in the C-terminal domain (CBD) of thrombospondin-1 function as CD47 agonists. A recombinant form of the CBD (rCBD) has been expressed that contains both VVM sites and exhibits CD47-dependent binding of C32 melanoma cells when coated at concentrations 100x lower than the peptide 4N1K (kRFYVVMWKk). Circular dichroism and thioflavin T binding of a recombinant form of the C-terminal domain (rCBD) of thrombospondin-1 indicated a species highly enriched in beta-sheet secondary structure, with spectra similar to those of amyloid proteins. Reduction of the CD signal with progressively higher concentrations of guanidine hydrochloride was correlated with a loss of cell-binding activity. Melanoma cell spreading on vitronectin was strongly stimulated by immobilized rCBD co-coated at concentrations more than 50x lower than 4N1K, and the effect was blocked by treatment with pertussis toxin, consistent with the known mediation of CD47 signaling by trimeric G(i). Mutations of either or both VV sequences of rCBD (1037-38 and 1123-24 of TSP1) to GG had a modest effect on cell binding, a component of which was inhibited by heparin. However, all three mutants dramatically reduced the signaling-dependent stimulation of cell spreading, indicating that the VVM motifs of rCBD are structurally linked in CD47 activation.  相似文献   

15.
16.
Nitric oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca(2+)](i)), and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells and that inhibition requires an increase in [Ca(2+)](i). Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca(2+)](i), up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca(2+)](i), also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca(2+) remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in K(m) for GTP, which rises to 834 μM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca(2+)](i) in response to NO, inducing vasodilation, but also is inhibited by high [Ca(2+)](i), providing a fine balance between signals for vasodilation and vasoconstriction.  相似文献   

17.
18.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

19.
Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that is able to make normal endothelial cells unresponsive to a wide variety of inducers. Here we use both native TSP-1 and small antiangiogenic peptides derived from it to show that this inhibition is mediated by CD36, a transmembrane glycoprotein found on microvascular endothelial cells. Both IgG antibodies against CD36 and glutathione-S-transferase–CD36 fusion proteins that contain the TSP-1 binding site blocked the ability of intact TSP-1 and its active peptides to inhibit the migration of cultured microvascular endothelial cells. In addition, antiangiogenic TSP-1 peptides inhibited the binding of native TSP-1 to solid phase CD36 and its fusion proteins, as well as to CD36-expressing cells. Additional molecules known to bind CD36, including the IgM anti-CD36 antibody SM, oxidized (but not unoxidized) low density lipoprotein, and human collagen 1, mimicked TSP-1 by inhibiting the migration of human microvascular endothelial cells. Transfection of CD36-deficient human umbilical vein endothelial cells with a CD36 expression plasmid caused them to become sensitive to TSP-1 inhibition of their migration and tube formation. This work demonstrates that endothelial CD36, previously thought to be involved only in adhesion and scavenging activities, may be essential for the inhibition of angiogenesis by thrombospondin-1.  相似文献   

20.
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号