共查询到20条相似文献,搜索用时 15 毫秒
1.
Kaur S Kuznetsova SA Pendrak ML Sipes JM Romeo MJ Li Z Zhang L Roberts DD 《The Journal of biological chemistry》2011,286(17):14991-15002
Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent M(r) > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent M(r) 230,000) and CD47 (apparent M(r) > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser(64) and Ser(79). Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser(64). 相似文献
2.
J Scott Isenberg Maria J Calzada Longen Zhou Nenghua Guo Jack Lawler Xue-Qing Wang William A Frazier David D Roberts 《Matrix biology》2005,24(2):110-123
We have reexamined the role of endogenous thrombospondin-1 (TSP1) in growth and motility of vascular smooth muscle cells (SMCs). Based on the ability of aortic-derived SMCs isolated from TSP1 null mice and grown in the absence of exogenous TSP1 to grow at comparable rates and to a slightly higher density than equivalent cells from wild-type mice, TSP1 is not necessary for their growth. Low concentrations of exogenous TSP1 stimulate growth of TSP1 null SMCs, but higher doses of TSP1 or its C-terminal domain are inhibitory. However, SMCs from TSP1 null mice are selectively deficient in chemotactic and proliferative responses to platelet-derived growth factor and in outgrowth in three-dimensional cultures. Recombinant portions of the N- and C-terminal domains of TSP1 stimulate SMC chemotaxis through different integrin receptors. Based on these data, the relative deficiency in SMC outgrowth during an ex vivo angiogenic response of muscle tissue from TSP1 null mice is probably due to restriction of platelet-derived growth factor dependent SMC migration and/or proliferation. 相似文献
3.
Elfaridah P. FrazierJeff S. Isenberg Sruti ShivaLei Zhao Paul SchlesingerJulie Dimitry Mones S. Abu-AsabMaria Tsokos David D. RobertsWilliam A. Frazier 《Matrix biology》2011,30(2):154-161
CD47, a receptor for thrombospondin-1, limits two important regulatory axes: nitric oxide-cGMP signaling and cAMP signaling, both of which can promote mitochondrial biogenesis. Electron microscopy revealed increased mitochondrial densities in skeletal muscle from both CD47 null and thrombospondin-1 null mice. We further assessed the mitochondria status of CD47-null vs WT mice. Quantitative RT-PCR of RNA extracted from tissues of 3 month old mice revealed dramatically elevated expression of mRNAs encoding mitochondrial proteins and PGC-1α in both fast and slow-twitch skeletal muscle from CD47-null mice, but modest to no elevation in other tissues. These observations were confirmed by Western blotting of mitochondrial proteins. Relative amounts of electron transport enzymes and ATP/O2 ratios of isolated mitochondria were not different between mitochondria from CD47-null and WT cells. Young CD47-null mice displayed enhanced treadmill endurance relative to WTs and CD47-null gastrocnemius had undergone fiber type switching to a slow-twitch pattern of myoglobin and myosin heavy chain expression. In 12 month old mice, both skeletal muscle mitochondrial volume density and endurance had decreased to wild type levels. Expression of myosin heavy chain isoforms and myoglobin also reverted to a fast twitch pattern in gastrocnemius. Both CD47 and TSP1 null mice are leaner than WTs, use less oxygen and produce less heat than WT mice. CD47-null cells produce substantially less reactive oxygen species than WT cells. These data indicate that loss of signaling from the TSP1-CD47 system promotes accumulation of normally functioning mitochondria in a tissue-specific and age-dependent fashion leading to enhanced physical performance, lower reactive oxygen species production and more efficient metabolism. 相似文献
4.
Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression. 相似文献
5.
Mechanosensitive induction of apoptosis in fibroblasts is regulated by thrombospondin-1 and integrin associated protein (CD47) 总被引:1,自引:0,他引:1
Graf R Freyberg M Kaiser D Friedl P 《Apoptosis : an international journal on programmed cell death》2002,7(6):493-498
Fibroblasts are cultured in three-dimensional collagen matrices to investigate the effect of mechanical tension on the regulation of apoptosis. Under the influence of mechanical loading, the cells show little apoptosis whereas releasing of tension leads to an increase up to tenfold during the first 24 h and remains constant for further 48 h. An autocrine loop of the integrin V3/CD47 receptor complex and thrombospondin-1 is identified as the molecular coupling device between mechanical loading and apoptosis: The integrin V3 is expressed under mechanical loading as well as unloading whereas the CD47 could only be identified after the release of tension. The secreted thrombospondin binds to the active receptor and induces apoptosis. The presented mechanosensitive regulation of apoptosis in fibroblast cultures could be an essential mechanism for the regression of the granulation tissue by apoptosis in the process of wound healing. 相似文献
6.
Swati Iyer Yash Chhabra Tracey J. Harvey Richard Wang Han Sheng Chiu A. G. Smith Walter G. Thomas David J. Pennisi Michael Piper 《Journal of molecular histology》2017,48(1):53-61
Endothelial cells form a critical component of the coronary vasculature, yet the factors regulating their development remain poorly defined. Here we reveal a novel role for the transmembrane protein CRIM1 in mediating cardiac endothelial cell development. In the absence of Crim1 in vivo, the coronary vasculature is malformed, the number of endothelial cells reduced, and the canonical BMP pathway dysregulated. Moreover, we reveal that CRIM1 can bind IGFs, and regulate IGF signalling within endothelial cells. Finally, loss of CRIM1 from human cardiac endothelial cells results in misregulation of endothelial genes, predicted by pathway analysis to be involved in an increased inflammatory response and cytolysis, reminiscent of endothelial cell dysfunction in cardiovascular disease pathogenesis. Collectively, these findings implicate CRIM1 in endothelial cell development and homeostasis in the coronary vasculature. 相似文献
7.
David D. Roberts Sukhbir Kaur David R. Soto-Pantoja 《Journal of cell communication and signaling》2015,9(1):101-102
CD47 is a signaling receptor for the matricellular protein thrombospondin-1 and a counter-receptor for signal regulatory protein-α (SIRPα) on macrophages. Following its initial discovery in 1992 as a cell surface protein that is over-expressed by ovarian carcinoma, elevated CD47 expression has emerged as a negative prognostic factor for a variety of cancers. CD47 is also a potential therapeutic target based on the ability of CD47 blockade to cause regression of tumors in mice, and a humanized CD47 antibody has recently entered phase I clinical trials. CD47 blockade may control tumor growth by inhibiting thrombospondin-1 signaling or by preventing inhibitory SIRPα signaling in tumor-associated macrophages. A recent publication by Lee et al. (Hepatology 60:179–191, 2014) provides evidence that blocking CD47 signaling specifically depletes tumor-initiating stem cells in hepatocellular carcinoma and implicates cathepsin-S/protease-activated receptor-2 signaling in mediating this therapeutic response. 相似文献
8.
Lee BO Moyron-Quiroz J Rangel-Moreno J Kusser KL Hartson L Sprague F Lund FE Randall TD 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(11):5707-5717
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation. 相似文献
9.
Desai Pratik Stein Jeffrey J. Siddiqui Sufyan A. Maier Kristopher G. Gahtan Vivian 《Molecular and cellular biochemistry》2015,403(1-2):85-94
Molecular and Cellular Biochemistry - Dyslipidemia is a risk factor for intimal hyperplasia (IH). Key to IH is vascular smooth muscle cell (VSMC) migration. Thrombospondin-1 (TSP-1) is a... 相似文献
10.
Lysosomal localization of murine CD1d mediated by AP-3 is necessary for NK T cell development 总被引:5,自引:0,他引:5
Cernadas M Sugita M van der Wel N Cao X Gumperz JE Maltsev S Besra GS Behar SM Peters PJ Brenner MB 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(8):4149-4155
The presentation of lipid and glycolipid Ags to T cells is mediated through CD1 molecules. In the mouse and rat only a single isoform, CD1d, performs these functions, while humans and all other mammals studied have members of both group I (CD1a, -b, and -c) and group II (CD1d) isoforms. Murine CD1d contains a cytoplasmic tyrosine-based sorting motif that is similar to motifs recognized by adaptor protein complexes that sort transmembrane proteins. Here we show that the adaptor protein complex, AP-3, directly interacts with murine CD1d and controls its targeting to lysosomes. AP-3 deficiency results in a redistribution of CD1d from lysosomes to the cell surface of thymocytes, B cell-depleted splenocytes, and dendritic cells. The altered trafficking of CD1d in AP-3-deficient mice results in a significant reduction of NK1.1(+)TCR-beta(+) and CD1d tetramer-positive cells, consistent with a defect in CD1d self-Ag presentation and thymocyte-positive selection. The AP-3 complex has recently been shown to associate with the human CD1b isoform, which has an intracellular distribution pattern similar to that of murine CD1d. We propose that lysosomal sampling may be so critical for efficient host defense that mice have evolved mechanisms to target their single CD1 isoform to lysosomes for sampling lipid Ags. Here we show the dominant mechanism for this trafficking is mediated by AP-3. 相似文献
11.
CARMA1 is necessary for optimal T cell responses in a murine model of allergic asthma 总被引:1,自引:0,他引:1
Ramadas RA Roche MI Moon JJ Ludwig T Xavier RJ Medoff BD 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(12):6197-6207
CARMA1 is a lymphocyte-specific scaffold protein necessary for T cell activation. Deletion of CARMA1 prevents the development of allergic airway inflammation in a mouse model of asthma due to a defect in naive T cell activation. However, it is unknown if CARMA1 is important for effector and memory T cell responses after the initial establishment of inflammation, findings that would be more relevant to asthma therapies targeted to CARMA1. In the current study, we sought to elucidate the role of CARMA1 in T cells that have been previously activated. Using mice in which floxed CARMA1 exons can be selectively deleted in T cells by OX40-driven Cre recombinase (OX40(+/Cre)CARMA1(F/F)), we report that CD4(+) T cells from these mice have impaired T cell reactivation responses and NF-κB signaling in vitro. Furthermore, in an in vivo recall model of allergic airway inflammation that is dependent on memory T cell function, OX40(+/Cre)CARMA1(F/F) mice have attenuated eosinophilic airway inflammation, T cell activation, and Th2 cytokine production. Using MHC class II tetramers, we demonstrate that the development and maintenance of Ag-specific memory T cells is not affected in OX40(+/Cre)CARMA1(F/F) mice. In addition, adoptive transfer of Th2-polarized OX40(+/Cre)CARMA1(F/F) Ag-specific CD4(+) T cells into wild-type mice induces markedly less airway inflammation in response to Ag challenge than transfer of wild-type Th2 cells. These data demonstrate a novel role for CARMA1 in effector and memory T cell responses and suggest that therapeutic strategies targeting CARMA1 could help treat chronic inflammatory disorders such as asthma. 相似文献
12.
Two VVM-containing peptides in the C-terminal domain (CBD) of thrombospondin-1 function as CD47 agonists. A recombinant form of the CBD (rCBD) has been expressed that contains both VVM sites and exhibits CD47-dependent binding of C32 melanoma cells when coated at concentrations 100x lower than the peptide 4N1K (kRFYVVMWKk). Circular dichroism and thioflavin T binding of a recombinant form of the C-terminal domain (rCBD) of thrombospondin-1 indicated a species highly enriched in beta-sheet secondary structure, with spectra similar to those of amyloid proteins. Reduction of the CD signal with progressively higher concentrations of guanidine hydrochloride was correlated with a loss of cell-binding activity. Melanoma cell spreading on vitronectin was strongly stimulated by immobilized rCBD co-coated at concentrations more than 50x lower than 4N1K, and the effect was blocked by treatment with pertussis toxin, consistent with the known mediation of CD47 signaling by trimeric G(i). Mutations of either or both VV sequences of rCBD (1037-38 and 1123-24 of TSP1) to GG had a modest effect on cell binding, a component of which was inhibited by heparin. However, all three mutants dramatically reduced the signaling-dependent stimulation of cell spreading, indicating that the VVM motifs of rCBD are structurally linked in CD47 activation. 相似文献
13.
Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1 总被引:32,自引:0,他引:32
Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that limits vessel density in normal tissues and curtails tumor growth. Here, we show that the inhibition of angiogenesis in vitro and in vivo and the induction of apoptosis by thrombospondin-1 all required the sequential activation of CD36, p59fyn, caspase-3 like proteases and p38 mitogen-activated protein kinases. We also detected increased endothelial cell apoptosis in situ at the margins of tumors in mice treated with thrombospondin-1. These results indicate that thrombospondin-1, and possibly other broad-spectrum natural inhibitors of angiogenesis, act in vivo by inducing receptor-mediated apoptosis in activated microvascular endothelial cells. 相似文献
14.
CD40-CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. 总被引:2,自引:0,他引:2
J K Whitmire R A Flavell I S Grewal C P Larsen T C Pearson R Ahmed 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(6):3194-3201
This study documents a striking dichotomy between CD4 and CD8 T cells in terms of their requirements for CD40-CD40 ligand (CD40L) costimulation. CD40L-deficient (-/-) mice made potent virus-specific CD8 T cell responses to dominant as well as subdominant epitopes following infection with lymphocytic choriomeningitis virus. In contrast, in the very same mice, virus-specific CD4 T cell responses were severely compromised. There were 10-fold fewer virus-specific CD4 T cells in CD40L-/- mice compared with those in CD40L+/+ mice, and this inhibition was seen for both Th1 (IFN-gamma, IL-2) and Th2 (IL-4) responses. An in vivo functional consequence of this Th cell defect was the inability of CD40L-/- mice to control a chronic lymphocytic choriomeningitis virus infection. This study highlights the importance of CD40-CD40L interactions in generating virus-specific CD4 T cell responses and in resolving chronic viral infection. 相似文献
15.
Rahaman SO Lennon DJ Febbraio M Podrez EA Hazen SL Silverstein RL 《Cell metabolism》2006,4(3):211-221
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy. 相似文献
16.
Bouguermouh S Van VQ Martel J Gautier P Rubio M Sarfati M 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(12):8073-8082
The cytokine milieu and dendritic cells (DCs) direct Th1 development. Yet, the control of Th1 polarization by T cell surface molecules remains ill-defined. We here report that CD47 expression on T cells serves as a self-control mechanism to negatively regulate type 1 cellular and humoral immune responses in vivo. Th2-prone BALB/c mice that lack CD47 (CD47(-/-)) displayed a Th1-biased Ab profile at steady state and after immunization with soluble Ag. CD47(-/-) mice mounted a T cell-mediated exacerbated and sustained contact hypersensitivity (CHS) response. After their adoptive transfer to naive CD47-deficient hosts 1 day before immunization with soluble Ag, CD47(-/-) as compared with CD47(+/+)CD4(+) transgenic (Tg) T cells promoted the deviation of Ag-specific T cell responses toward Th1 that were characterized by a high IFN-gamma:IL-4 cytokine ratio. Although selective CD47 deficiency on DCs led to increased IL-12p70 production, CD47(-/-)Tg T cells produced more IFN-gamma and displayed higher T-bet expression than CD47(+/+) Tg T cells in response to OVA-loaded CD47(-/-) DCs. CD47 as part of the host environment has no major contribution to the Th1 polarization responses. We thus identify the CD47 molecule as a T cell-negative regulator of type 1 responses that may limit unwanted collateral damage to maximize protection and minimize host injury. 相似文献
17.
H-Ras is well known as one of the essential components of Ras/Raf/MEK/ERK cascade, which is a critical prosurvival signaling mechanism in most eukaryotic cells. Ras targets Raf/MEK/ERK cascade by integrating and transmitting extracellular signals from growth factor receptors to Raf, leading to the propagation of signals to modulate a serious of cellular survival events. Apoptosis signal-regulating kinasel (ASK1) serves as a general mediator of cell death because it is responsive to a variety of death signals. In this study, we found that H-Ras interacted with ASK1 to cause the inhibition of both ASK1 activity and ASKl-induced apoptosis in vivo, which was reversed only partially by addition of RafS621 A, an antagonist of Raf, whereas MEK inhibitor, PD98059, and PI3K inhibitor, LY294002, did not disturb the inhibitory effect of H-Ras on ASK-1-induced apoptosis. Furthermore, by means of immunoprecipitate and kinase assays, we demonstrated that the interaction between H-Ras and ASK1 as well as the inhibition of ASKI activity were dependent on the binding activity of H-Ras. These results suggest that a novel mechanism may be involved in H-Rasmediated cell survival in addition to the well established MEK/ERK and PI3K/Akt kinase-dependent enhancement of cell survival. 相似文献
18.
Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1 总被引:2,自引:0,他引:2
下载免费PDF全文

Chandrasekaran L He CZ Al-Barazi H Krutzsch HC Iruela-Arispe ML Roberts DD 《Molecular biology of the cell》2000,11(9):2885-2900
Thrombospondin-1 (TSP1) can inhibit angiogenesis by interacting with endothelial cell CD36 or proteoglycan receptors. We have now identified alpha3beta1 integrin as an additional receptor for TSP1 that modulates angiogenesis and the in vitro behavior of endothelial cells. Recognition of TSP1 and an alpha3beta1 integrin-binding peptide from TSP1 by normal endothelial cells is induced after loss of cell-cell contact or ligation of CD98. Although confluent endothelial cells do not spread on a TSP1 substrate, alpha3beta1 integrin mediates efficient spreading on TSP1 substrates of endothelial cells deprived of cell-cell contact or vascular endothelial cadherin signaling. Activation of this integrin is independent of proliferation, but ligation of the alpha3beta1 integrin modulates endothelial cell proliferation. In solution, both intact TSP1 and the alpha3beta1 integrin-binding peptide from TSP1 inhibit proliferation of sparse endothelial cell cultures independent of their CD36 expression. However, TSP1 or the same peptide immobilized on the substratum promotes their proliferation. The TSP1 peptide, when added in solution, specifically inhibits endothelial cell migration and inhibits angiogenesis in the chick chorioallantoic membrane, whereas a fragment of TSP1 containing this sequence stimulates angiogenesis. Therefore, recognition of immobilized TSP1 by alpha3beta1 integrin may stimulate endothelial cell proliferation and angiogenesis. Peptides that inhibit this interaction are a novel class of angiogenesis inhibitors. 相似文献
19.
The tumor suppressor PTEN is necessary for human Sprouty 2-mediated inhibition of cell proliferation
Edwin F Singh R Endersby R Baker SJ Patel TB 《The Journal of biological chemistry》2006,281(8):4816-4822
Sprouty family proteins are novel regulators of growth factor actions. Human Sprouty 2 (hSPRY2) inhibits the proliferation of a number of different cell types. However, the mechanisms involved in the anti-proliferative actions of hSPRY2 remain to be elucidated. Here we have demonstrated that hSPRY2 increases the amount of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and decreases its phosphorylation. The resultant increase in PTEN activity is reflected in decreased activation of Akt by epidermal growth factor and serum. Consistent with increased PTEN activity, in hSPRY2-expressing cells, the progression of cells from the G1 to S phase is decreased. By using PTEN null primary mouse embryonic fibroblasts and their isogenic controls as well as small interfering RNA against PTEN, we demonstrated that PTEN is necessary for hSPRY2 to inhibit Akt activation by epidermal growth factor as well as cell proliferation. Overall, we concluded that hSPRY2 mediates its anti-proliferative actions by altering PTEN content and activity. 相似文献
20.
Thomas W. Miller Sukhbir Kaur Kelly Ivins-O'Keefe David D. Roberts 《Matrix biology》2013,32(6):316-324
Thrombospondin-1 is a potent suppressor of T cell activation via its receptor CD47. However, the precise mechanism for this inhibition remains unclear. Because H2S is an endogenous potentiator of T cell activation and is necessary for full T cell activation, we hypothesized that thrombospondin-1 signaling through CD47 inhibits T cell activation by antagonizing H2S signaling. Primary T cells from thrombospondin-1 null mice were more sensitive to H2S-dependent activation assessed by proliferation and induction of interleukin-2 and CD69 mRNAs. Exogenous thrombospondin-1 inhibited H2S responses in wild type and thrombospondin-1 null T cells but enhanced the same responses in CD47 null T cells. Fibronectin, which shares integrin and glycosaminoglycan binding properties with thrombospondin-1 but not CD47 binding, did not inhibit H2S signaling. A CD47-binding peptide derived from thrombospondin-1 inhibited H2S-induced activation, whereas two other functional sequences from thrombospondin-1 enhanced H2S signaling. Therefore, engaging CD47 is necessary and sufficient for thrombospondin-1 to inhibit H2S-dependent T cell activation. H2S stimulated T cell activation by potentiating MEK-dependent ERK phosphorylation, and thrombospondin-1 inhibited this signaling in a CD47-dependent manner. Thrombospondin-1 also limited activation-dependent T cell expression of the H2S biosynthetic enzymes cystathionine β-synthase and cystathionine γ-lyase, thereby limiting the autocrine role of H2S in T cell activation. Thus, thrombospondin-1 signaling through CD47 is the first identified endogenous inhibitor of H2S signaling and constitutes a novel mechanism that negatively regulates T cell activation. 相似文献