首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Changes in the extent of P700 oxidation (P700+) were investigated after chilling of barley, rice, pumpkin, and cucumber leaf segments at 4°C for 1 h under light with various photon flux densities. At 50 µmol photons m−2 s−1, the decrease in P700+ was observed only in cucumber, but at 150 µmol photons m−2 s−1, it was found in all plants except barley, revealing their expected chilling sensitivities. However, the decrease in P700+ by this short-term chilling was reversible in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea or methyl viologen, and it did not show any causal relationship with the decrease in the electron transfer rate nor with the down-regulation of photosystem II through the accumulation of zeaxanthin and the development of non-photochemical quenching. These results led to the suggestion that photosystem I (PSI) acceptor side limitation is a prerequisite for the decrease of P700+. Furthermore, PSI acceptor side limitation could be mainly due to limitation of electron-sink pathways such as CO2 assimilation and ascorbate–glutathione cycle, because treatment with glycolaldehyde which inhibits the former pathway, and with KCN which inhibits both pathways, decreased P700+ by 20–30% in barley leaves after chilling in the light.  相似文献   

2.
Extension growth of secondary needles is under photoperiodic control in Pinus sylvestris . To test for the effects of far-red light on maintaining this extension growth, seedlings of six populations originating from latitudes between 57° and 67°N were raised for 11 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred at the same temperature to a daily regime of 8 h incandescent light (230 µmol m−2 s−1) followed by a 16 h day extension with cool white fluorescent light (40 µmol m−2 s−1, R/FR ratio 7.5) or with incandescent lamps (20 µmol m−2 s−1, R/FR ratio 2.0). For the seedlings from the three populations north of 64°, needle extension growth over 42 days in the FR-poor day extension treatment was lower by up to 40% than in the FR-rich day extension treatment, whereas for the seedlings from the three southern populations the needle extension growth was similar in both day extension treatments. The requirement for FR in day extensions is characteristic of 'light-dominant' photoperiodic control mechanisms. It appears that P. sylvestris changes from dark-dominant night timekeeping to light-dominant day timekeeping with increasing latitude, as with the photoperiodic control of budset in Picea abies .  相似文献   

3.
Nutrient acquisition in the mature root zone is under systemic control by the shoot and the root tip. In maize, exposure of the shoot to light induces short-term (within 1–2 min) effects on net K+ and H+ transport at the root surface. H+ efflux decreased (from −18 to −12 nmol m−2 s−1) and K+ uptake (∼2 nmol m−2 s−1) reverted to efflux (∼−3 nmol m−2 s−1). Xylem probing revealed that the trans-root (electrical) potential drop between xylem vessels and an external electrode responded within seconds to a stepwise increase in light intensity; xylem pressure started to decrease after a ∼3 min delay, favouring electrical as opposed to hydraulic signalling. Cutting of maize and barley roots at the base reduced H+ efflux and stopped K+ influx in low-salt medium; xylem pressure rapidly increased to atmospheric levels. With 100 m m NaCl added to the bath, the pressure jump upon cutting was more dramatic, but fluxes remained unaffected, providing further evidence against hydraulic regulation of ion uptake. Following excision of the apical part of barley roots, influx changed to large efflux (−50 nmol m−2 s−1). Kinetin (2–4  µ m ), a synthetic cytokinin, reversed this effect. Regulation of ion transport by root-tip-synthesized cytokinins is discussed.  相似文献   

4.
To test for the effects of far‐red light on preventing budset in Picea abies , seedlings of six populations originating from latitudes between 67°N and 47°N were grown for 4–8 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred, at the same temperature, to a daily regime of 8 h incandescent light (300 µmol m−2 s−1) followed by 16 h cool white fluorescent light (40 µmol m−2 s−1). (Cool white lamps are deficient in far‐red light, with a R/FR ratio of 7.5 compared with 2.0 for the incandescent lamps.) All the seedlings from 67° and 80% of those from 64° stopped extension growth and set terminal buds within 28 days of the change of regime. The seedlings from 61° and further south continued growing, as did control seedlings from 67° grown as above but with incandescent light at 20 µmol m−2 s−1 replacing cool white illumination. To distinguish between a clinal and ecotypic pattern of variation, the interval between 64° and 59° was investigated by growing populations originating from that area in the same regimes as before. After 28 days in the cool white day‐extension regime, the percentage budset was 86 for the population from 64°, 0 for the population from 59° and 25–50 for the intermediate populations; i.e. the populations showed a clinal variation in requirement for far‐red light according to latitude. Thus northern populations of Picea abies appear to behave as 'light‐dominant' plants for the photoperiodic control of extension growth and budset, whereas the more southern populations behave as 'dark‐dominant' plants.  相似文献   

5.
Both reduced illumination and increased turbidity caused a significant reduction in reaction distance of Gobiusculus flavescens . The longest reaction distance, 18.9 cm for larger prey (Calanus finmarchicus) , occurred at a light level of 80 μmol m −2 s −1 compared to 12.9 cm for a smaller prey (Acartia clausi) at 8 μmol m−2 s−1. Above a light saturation level of 10 μmol m−2 s−1, additional light had little influence on reaction distance. In the turbidity experiments, the longest reaction distances were measured at turbidity levels of 10–20 JTU. Prey size influenced reaction distance at all tested light levels. Search time was influenced by prey size only at low illumination. With increasing turbidity, reaction distance to a group of prey was longer than to one prey.  相似文献   

6.
The effects of the ratio of Rubisco activase to Rubisco (activase/Rubisco ratio) on light dependent activation of CO2 assimilation were investigated during leaf aging of rice. Changes of photosynthetic CO2 gas exchange rates in relation to step increases of light intensity from two photon flux densities of 60 µmol m−2 s−1 (low initial PFD) and 500 µmol m−2 s−1 (high initial PFD) to saturated PFD of 1 800 µmol m−2 s−1 were measured. These photosynthetic activation processes were considered to be limited by the Rubisco activation rate when analyzed by the relaxation method. The relaxation time of low initial PFD gradually declined from 3 to 33 days after leaf emergence and showed high and negative correlation to the activase/Rubisco ratio. The initial rate of Rubisco activation under low initial PFD linearly correlated to the amounts of Rubisco activase, whereas these were almost constant from 3 to 23 days after leaf emergence. But these correlations could not be recognized in the case of high initial PFD. Moreover, the relaxation times were more sensitive to intercellular CO2 concentration (Ci) under high initial PFD than under low initial PFD, especially, at Ci below 300 µl l−1. These results suggest the involvement of the activase/Rubisco ratio in the photosynthetic activation under relatively low initial PFD, and the limitation of photosynthetic activation under relatively high initial PFD by Rubisco carbamylation during leaf aging of rice.  相似文献   

7.
In order to characterize physiological modifications encountered by buckwheat plants exposed to both drought and low-light stresses, seedlings (cv. La Harpe) were exposed under controlled environmental conditions, to a progressive decline in soil volumetric water content under two light regimes: low irradiance (80 µmol m−2 s−1) or moderate irradiance (160 µmol m−2 s−1). Phenological evolution of the whole plant until the macroscopic appearance of the reproductive structure and physiological properties of leaves in relation to their position on the main axis were quantified. Water stress reduced net assimilation rate (NAR) before specific leaf area (SLA) and induced a decrease in stomatal conductance (gl) and carbon isotope discrimination (Δ). Water consumption by stressed plants was similar under both light treatments. Water-stressed plants under moderate irradiance exhibited higher growth, NAR, osmotic adjustment, and lower SLA than plants maintained under low irradiance. However, the former died after 27 days of treatment while the latter still remained alive until the experiment was discontinued (40 days). We concluded that the physiological strategy adopted by the water-stressed plants maintained under moderate irradiance did not afford a long-term advantage in terms of survival. The effects of a combination of low-light and water stress on chlorophyll concentration and carbon isotope discrimination (Δ) are discussed in relation to growth parameters.  相似文献   

8.
Changes in photosynthetic capacity of the seaweed Gracilaria tenuistipitata Zhang et Xia acclimated to monochromatic blue light were studied. For this purpose, affinity for external inorganic carbon, light use efficiency, carbonic anhydrase (CA; EC 4.2.1.1) activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were determined in thalli acclimated to 45 µmol m−2 s−1 of blue light. Thalli cultured in white light of the same photon fluence rate were used as a control. Lower maximal photosynthetic rates (i.e. at light and carbon saturation) were obtained in the thalli cultured in blue light. Apparently, this lower photosynthetic capacity was not due to differences in affinity and/or capacity for use of external dissolved inorganic carbon (DIC) since (1) CA activity did not change significantly and (2) similar values of photosynthetic conductance for DIC at alkaline pH were obtained (0.95 × 10−6 m s−1). In addition, the pool size of Rubisco was not modified by the blue light treatment since there were no significant differences in Rubisco content between white (12.14% of soluble proteins) and blue light (12.13% of soluble proteins) treatments. In contrast, F v/ F m was increased by 11% and photosynthetic efficiency for oxygen production was reduced by 50% in blue light. This absence of correlation between quantum yields for maximum stable charge separation of photosystem II and oxygen evolution suggests that blue light promote changes in rates of photosynthetic electron flow.  相似文献   

9.
The schooling behaviour of Atlantic mackerel was studied in a large tank at different light intensities in the range 12.6–1.8 × 10−10μEs−1 m−2. Variable light intensity was produced by accurately controlling the current to a green light-emitting diode (LED) 3 m above the experimental tank. Under high light levels (1.8 × 10−6μEs−1 m−2) mackerel always formed a single school, whereas at lower levels (1.8 × 10−8μEs−1 m−2) they swam as individuals. At light levels down to 1.0 × 10−6μEs−1 m−2 the mean nearest neighbour distance in a school remained relatively constant (0.3–0.9 body lengths), and individual mackerel swam along a path which deviated from the position of their nearest neighbours by less than 14°. As light dropped below 1.8 × 10−7μEs−1 m−2, both nearest neighbour distance and heading angle between nearest neighbours increased, with mean values of 1–1.8 body lengths and 23–92°, respectively, at 1.8 × 10−9μEs−1 m−2. The results are discussed in terms of ambient light conditions in the sea.  相似文献   

10.
Carotenoids play critical roles in both light harvesting and energy dissipation for the protection of photosynthetic structures. However, limited research is available on the impact of irradiance on the production of secondary plant compounds, such as carotenoid pigments. Kale ( Brassica oleracea L.) and spinach ( Spinacia oleracea L.) are two leafy vegetables high in lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different irradiance levels on tissue biomass, elemental nutrient concentrations, and lutein β-carotene and chlorophyll (chl) pigment accumulation in the leaves of kale and spinach. 'Winterbor' kale and 'Melody' spinach were grown in nutrient solution culture in growth chambers at average irradiance levels of 125, 200, 335, 460, and 620 μmol m−2 s−1. Highest tissue lutein β-carotene and chls occurred at 335 μmol m−2 s−1 for kale, and 200 μmol m−2 s−1 for spinach. The accumulations of lutein and β-carotene were significantly different among irradiance levels for kale, but were not significantly different for spinach. However, lutein and β-carotene accumulation was significant for spinach when computed on a dry mass basis. Identifying effects of irradiance on carotenoid accumulation in kale and spinach is important information for growers producing these crops for dry capsule supplements and fresh markets.  相似文献   

11.
The effect of exogenous application of the cytokinin meta -topolin [mT; N6-( meta -hydroxybenzyl)adenine] on artificial senescence of detached wheat leaves ( Triticum aestivum L. cv. Hereward) was studied and compared in leaves senescing under continuous light (100 µmol photons m−2 s−1) and darkness. Senescence-induced deterioration in structure and function of the photosynthetic apparatus was characterized by reduction in chlorophyll content, maximal efficiency of photosystem (PS) II photochemistry ( F v/ F m) and the rate of CO2 assimilation, by increase in the excitation pressure on PSII (1 −  q P) and a level of lipid peroxidation and by modifications in chloroplast ultrastructure. While in darkened leaf segments mT effectively slowed senescence-induced changes in all measured parameters, in light-senescing segments the effect of mT changed into opposite a few days after detachment. We observed an overexcitation of photosynthetic apparatus, as indicated by pronounced increases in the excitation pressure on PSII and in a deepoxidation state of xanthophyll cycle pigments, marked starch grain accumulation in chloroplasts and stimulation of lipid peroxidation in light-senescing leaf segments in mT. Possible mechanisms of acceleration of senescence-accompanying decrease in photosynthetic function and increase in lipid peroxidation during mT influence are discussed. We propose that protective mT action in darkness becomes damaging during artificial senescence in continuous light due to overexcitation of photosynthetic apparatus resulting in oxidative damage.  相似文献   

12.
We conducted a series of experiments to assess the effects of oxidative stress on chlorophyll biosynthesis in the vascular plant Cucumis sativus (cucumber). Specifically, cucumber cotyledons were treated with 100 μ M methyl viologen (MV) and subsequently exposed to dark (0 μE m−2 s−1), low light (40–45 μE m−2 s−1), or high light (1500–1600 μE m−2 s−1). Following treatment, extracts of these samples were subjected to high-performance liquid chromatography (HPLC) to quantitate the accumulation of chlorophyll biosynthetic pathway intermediates. The results of these analyses revealed significant accumulation of Mg-protoporphyrin IX monomethyl ester (Mg-proto IX ME) in green (14-h illuminated) as well as in etiolated cotyledons with MV treatment. These data suggest that MV-induced oxidative stress may have inhibited Mg-proto IX ME cyclase activity. Upon exposure to high light, in the presence or absence of MV, both green and etiolated cotyledons predominantly accumulated protoporphyrin IX (Proto IX). These elevated levels of Proto IX might be attributable to attenuated activity of any or all of the following enzymes: Mg-chelatase, Fe-chelatase and protoporphyrinogen IX oxidase. We also observed that MV-induced oxidative stress impacts on chlorophyll biosynthesis to a greater extent than on photosystem II. These results demonstrate that oxidative stress impedes key steps in chlorophyll biosynthesis by either directly or indirectly inhibiting the activity of these enzymes.  相似文献   

13.
Broad-band UV-B radiation inhibited hypocotyl elongation in etiolated tomato ( Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings. This inhibition could be elicited by < 3 μmol m−2 s−1 of UV-B radiation provided against a background of white light (> 620 μmol m−2 s−1 between 320 and 800 nm), and was similar in wild-type and phytochrome-1-deficient aurea mutant seedlings. These observations suggest that the effect of UV-B radiation is not mediated by phytochrome. An activity spectrum obtained by delivering 1 μmol m−2 s−1 of monochromatic UV radiation against a while light background (63 μmol m−2 s−1 showed maximum effectiveness around 300 nm, which suggests that DNA or aromatic residues in proteins are not the chromophores mediating UV-B induced inhibition of elongation. Chemicals that affect the normal (photo)chemistry of flavins and possibly pterins (KI, NaN, and phenylacetic acid) largely abolished the inhibitor) effect of broad-hand UV-B radiation when applied to the root zone before irradiation. KI was effective at concentrations < 10−4 M , which have been shown in vitro to be effective in quenching the triplet excited stales of flavins but not fluorescence from pterine or singlet states of flavins. Elimination of blue light or reduction of UV-A, two sources of flavin excitation, promoted hypocotyl elongation, but did not affect the inhibition of elongation evened by UV-B. Kl applied after UV-B irradiation had no effect on the inhibition response. Taken together these findings suggest that the chromophore of the photoreceptor system invoked in UV-B perception by tomato seedlings during de-etiolation may be a flavin.  相似文献   

14.
Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects of structural, functional and environmental variables on foliar respiration; (2) extrapolated foliar respiration to the ecosystem; and (3) estimated ecosystem respiration. Foliar respiration temperature response was constant within plant functional group, and foliar morphology drove much of the within-canopy variability in respiration and foliar nutrients. Foliar respiration per unit ground area was 3.5 ± 0.2  µ mol CO2 m−2 s−1, and ecosystem respiration was 9.4 ± 0.5  µ mol CO2 m−2 s−1[soil = 41%; foliage = 37%; woody = 14%; coarse woody debris (CWD) = 7%]. When modelled with El Niño Southern Oscillation (ENSO) year temperatures, foliar respiration was 9% greater than when modelled with temperatures from a normal year, which is in the range of carbon sink versus source behaviour for this forest. Our ecosystem respiration estimate from component fluxes was 33% greater than night-time net ecosystem exchange for the same forest, suggesting that studies reporting a large carbon sink for tropical rain forests based solely on eddy flux measurements may be in error.  相似文献   

15.
The significance of photosynthetic photon flux (PPF) and sugar feeding for the production of plants in vitro is only poorly understood. Nicotiana tabacum L. plantlets were grown photoautotrophically and photomixotrophically (3% sucrose) at two different PPFs (60 µmol m−2 s−1 and 200 µmol m−2 s−1) to investigate the effect of these culture parameters on photosynthetic performance and growth. Photomixotrophically‐grown plantlets showed an increase in carbohydrate content, mainly in glucose and fructose. Plant growth, dry matter accumulation and total leaf area were higher under photomixotrophic than photoautotrophic conditions. Not only biomass formation but also photosynthesis was positively affected by exogenous sucrose; the chlorophyll (Chl) content and the light‐saturated rate of photosynthetic oxygen evolution were higher in photomixotrophic plantlets. Photoinhibition occurred in plantlets that were grown photoautotrophically at the higher PPF. It became apparent as a loss in Chl content and photochemical efficiency. Photoinhibited plantlets showed a decrease in the D2/LHCII and CP47/LHCII ratios, suggesting a preferential loss of proteins from the photosystem II (PSII) core. The increased content of xanthophyll cycle pigments in photoinhibited plantlets indicated that also protective mechanisms were activated. Photomixotrophic growth of the plantlets prevented the occurrence of photoinhibitory symptoms. Therefore, we conclude that culture on sugar medium increases not only the photosynthetic potential but also the high light resistance of plantlets grown in vitro.  相似文献   

16.
The rate coefficient of repair of photosystem II after photoinactivation   总被引:1,自引:1,他引:0  
During photosynthesis, photoinactivation and repair of photosystem II (PSII) occur simultaneously, resulting in a net loss of functional PSII under a given irradiance. This study determines the rate coefficients for the partial processes, allowing the calculation of the partial rates at any concentration of functional/non-functional PSII. The rate coefficient of photoinactivation was obtained from the onset of photoinactivation of PSII in leaf segments of Capsicum annuum L. in the absence of repair, and was in turn used to obtain the rate coefficient ( k r) of repair of PSII when repair was occurring. The value of k r was found to be near maximum at an irradiance as low as 29 µmol photons m−2 s−1 and peaked at or somewhat above the growth irradiance; however, it declined on further increasing the irradiance, possibly due to oxidative stress. The value of k r was considerably decreased by elevating the CO2 to about 1%, particularly at low irradiance, probably due to acidification of the stroma to a pH outside the range that is optimal for protein synthesis. The method of determining k r is convenient to apply, not relying on radiolabelling and pulse-chase experiments.  相似文献   

17.
The circadian rhythm in growth of the red macroalga Porphyra umbilicalis (Linnaeus) J. Agardh was investigated under different spectral light conditions in laboratory-grown thalli. A free-running rhythm was observed in constant green or red light at irradiances of 2.5 to 20 μmol photons·m−2·s−1, whereas arhythmicity occurred in constant blue light at 6–20 μmol photons·m−2·s−1. The circadian oscillator controlling growth rhythmicity in Porphyra uses most of the visible sunlight spectrum and possibly multiple photoreceptors with a high sensitivity for blue light and a lower sensitivity for red light. This was inferred from three experimental results: (1) The free-running period, τ, of the growth rhythm decreased with increasing irradiance, from approximately 25 h at 2.5 μmol photons·m−2·s−1 to 22 h at 20 μmol photons·m−2·s−1 in red or green light, (2) Dark pulses of 3 h duration, interrupting otherwise continuous green or red light, caused advances during the subjective day and delays during the subjective night; the circadian oscillator in Porphyra can discriminate darkness from green or red light, and (3) Low-irradiance blue light pulses (2.5 μmol photons·m−2·s−1) shifted the growth rhythm in red light of higher irradiance (e.g. 10 μmol photons·m−2·s−1), and a strong, high amplitude, type 0 phase response curve was obtained that is usually observed with light pulses shifting a circadian rhythm in otherwise continuous darkness.  相似文献   

18.
The effects of UV-C (254 nm), UV-A (365 nm) and broad-band UV (280–380 nm) on guard cells of Vicia faba L. cv. Long Pod were investigated in the presence of white light (450 μmol m−2 s−1). UV-C (7 μmol m−2 s−1) was found to cause leakage of 86Rb+ from guard cells, while UV-A (0.3 μmol m−2 s−1) stimulated increased uptake in these cells. A relatively small stimulatory effect was observed by broad-band UV (3 μmol m−2 s−1) during the first 30 min of irradiation with an apparent equilibration of influx and efflux thereafter. Leakage of 86Rb+ from guard cells continued despite the removal of UV-C and an increase in the amount of white light from 450 to 1500 μmol m−2 s−1, suggesting that membranes were irreversibly damaged. Irradiation of guard cells with UV-C for 30, 45 and 90 min indicated that these cells began to be affected already by 30 min UV-C irradiation.  相似文献   

19.
1. Some characteristics of the photosynthesis and primary production of benthic and planktonic algal communities were investigated in a littoral zone covered with gravel in the north basin of Lake Biwa, paying special attention to the recent development of filamentous green algae (FGA) in the benthic algal community.
2. Pmax (maximum gross photosynthesis rate) values of the benthic algal community (0.1–1.2 mg C mg chl. a −1 h−1) obtained from photosynthesis–irradiance (P–I) curves were lower than those of the planktonic algal community (2.4–11.5 mg C mg chl. a −1 h−1). This is apparently a result of the high degree of self shading in the benthic algal community and its low turnover as compared with that of the planktonic algal community.
3. Relatively high Ik values (150–200 μmol photon m−2 s−1) were observed in the benthic algal community only in June–July when a FGA, Spirogyra sp., was abundant. This reflected a photosynthetic characteristic of the Spirogyra itself, in which photosynthesis was saturated at high light intensity.
4. The FGA community established in the layer between planktonic and sessile (benthic algae except for FGA) algal communities. It brought about extraordinarily high organic matter production in the littoral zone at the expense of production in the sessile algal community.  相似文献   

20.
Gyrodinium dorsum Kofoid responds photophobically to flashes of blue light. The photophobic response consists of a cessation of movement (stop-response). Without background light and after a flash fluence above 10 J m−2, 75–85% of the cells show a stop-response, while only 50% of the cells show this response at 5 J m−2. With a flash fluence of 5 J m−2, background light of different wavelengths either increases (614 nm. 5.5–18.2 μmol m−2 s−1) or decreases (700 nm, 18.4–36.0 μmol m−2 s−1) the stop-response. Two hypotheses for the mechanism of the modulation by background light of the photophobic response are discussed: an effect of light on the balance of the photosynthetic system (PS I/PS II) or an effect on a phytochrome-like pigment (Pr/Pfr). This study supports the idea that a phytochrome-like pigment works in combination with a blue light-absorbing pigment. It was also found that cells of Gyrodinium dorsum cultured in red light (39.8 μmol m−2) had a higher absorption in the red region of the absorption spectra than those cultured in white light (92.7 μmol m−2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号