首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerase chain reaction (PCR) technique was used to detect a whey acidic protein (WAP) gene and transgene presence in mouse ova cultured to various stages of development after pronuclear microinjection at the one-cell stage. The PCR technique detected an endogenous 442 bp WAP DNA sequence in 78% of one-cell, 88% of two-cell and 94% of four-cell ova, and in 95% of morulae and 97% of blastocysts. The heterologous WAP-human protein C transgene was detected in 88% of one-cell, 88% of two-cell and 44% of four-cell ova, and in 40% of morulae and 29% of blastocysts. For comparison, the integration frequency for transgenic mouse production using the same DNA construct was 22%. After five days ofin vitro culture, embryos that were either developmentally arrested or fragmented were tested for the presence of the transgene. The injected construct was detected in 83% of arrested one-cell, 85% of arrested two-cell, and 85% of fragmented ova. In culture, only 28% of zygotes microinjected with DNA developed to the blastocyst stage compared to 74% of noninjected zygotes, while 63% of zygotes developed to the blastocyst stage after injection of buffer alone. Pronuclear injection of the transgene at concentrations of 1.5, 15 and 50 g ml–1 resulted in 28, 11 and 9% development to blastocysts and 29, 86 and 88% transgene detection, respectively. Transgene detection was 85, 96 and 97% in degenerate embryos at the respective doses of DNA. These data show that pronuclear microinjection of the transgene is detrimental to subsequent embryonic development. Also, unintegrated copies of the transgene probably exist at least until the blastocyst stage, and thereafter are degraded to the extent that they can no longer be detected by PCR.  相似文献   

2.
A limiting factor in the development of new technologies and transport of rats worldwide has been the inability to robustly culture preimplantation embryos. Previously, culture in vitro to the blastocyst stage from one-cell embryos was successful only if the one-cell embryos were isolated near the time of the first cleavage and from only a few strains. Here we report the use of commonly available, chemically defined culture media to overcome these limitations. In vitro culture of young one-cell embryos using common embryo media (KSOM, BMOC, or HTF) for 18-22 h followed by culture in mR1ECM medium allows the successful in vitro development of blastocysts from one-cell embryos after 5 days from both outbred (SD) and inbred strains of rat (WF, LEW, F344, and PVG). This system allows the parthenogenetic development of chemically activated, unfertilized oocytes to the blastocyst stage. Embryos cultured in this system develop to term and are live-born following transfer to surrogate mothers.  相似文献   

3.
Successful development of porcine embryos from the one-cell stage to the blastocyst stage has been accomplished using mouse oviducts in organ culture. One-cell embryos were transferred to mouse oviducts maintained in organ culture and were cultured for 6 days. Control embryos from each donor pig were cultured in a modified Krebs-Ringer bicarbonate medium. Thus control and experimental embryos obtained from the same individual pig could be directly compared. At the end of the culture period, all embryos were scored for the stage of development attained and stained to allow the cell number of each embryo to be counted. In medium alone, only 35.7% of the one-cell embryos reached the morula or blastocyst stage, whereas 78.1% of the one-cell embryos transferred to mouse oviducts reached the morula or blastocyst stage. Of those embryos reaching the morula or blastocyst stage, cell numbers were similar for the two treatments (medium alone vs. oviduct culture). The procedure described for mouse oviduct organ culture provides a simple method for culturing early-stage pig embryos to the morula or blastocyst stage prior to embryo transfer.  相似文献   

4.
Preliminary observations showed that one-cell embryos from random-bred MF1 mice avoid cleavage arrest at the two-cell stage ('in vitro two-cell block') when cultured in modified M16 culture medium containing lactate and pyruvate but lacking glucose. The roles of lactate, pyruvate and glucose during preimplantation development of embryos from random-bred mice in vitro were therefore examined. When all three substrates were present continuously during culture, one-cell embryos arrested at the two- to four-cell stages. Improved development to the morula stage after 96 h in culture was obtained in media containing pyruvate alone, lactate and pyruvate, pyruvate and glucose, lactate pyruvate and glucose for the first 24 h, and medium containing lactate and pyruvate for the remaining 72 h. In a second experiment, embryos were cultured in medium containing pyruvate alone, lactate and pyruvate or pyruvate and glucose for the first 24 h, and lactate plus pyruvate medium for the second 24 h. Subsequent transfer to medium containing lactate, pyruvate and glucose supported the morula to blastocyst transition. These results show that developmental arrest in vitro can be overcome by changing the combination of energy substrates at different stages of preimplantation development.  相似文献   

5.
Summary One-cell embryos from outbred mice (CF1, CD-1, and Dub:ICR) were cultured in various modifications of egg culture medium (ECM). The best development was observed in medium in which inorganic salts of modified T6 medium (mT6) replaced those of ECM. In this modification (TE), 66% of one-cell CF1 embryos developed into blastocysts, comared to 46 and 43% for ECM and mT6, respectively. Moreover, the cell numbers of blastocysts developing in TE (74.9±3.3) were higher than the cell numbers of those developing in ECM (55.1±2.4). The culture requirements of embryos varied between different stocks of mice: Fewer CF1 embryos developed to the blastocyst stage than either Dub:ICR embryos (90%) or CD-1 embryos (84%). Lowering the osmolarity of the medium from 300 to 280 mOsm, increasing the concentration of KC1 from 1.42 to 25 mM, or omitting lactate from the medium during Day 1 of culture did not further improve development of embryos, in contrast to previous reports. However, the time at which embryos were transferred to outgrowth medium influenced their postblastocyst development. The best development was observed when embryos were transferred on Day 4 of culture at the late morula-early blastocyst stage. This work was supported by the Office of Health and Environmental Research, U.S. Department of Energy, Washington, DC, contract DE-AC03-76-SF01012.  相似文献   

6.
Analysis over the first 48 h of development in vitro from the one-cell stage to the early four-cell stage indicated that (i) ethylenediaminetetraacetic acid (EDTA) exerts the major beneficial effect on culture to the blastocyst stage of F1 and MF1 embryos, (ii) glutamine assists development of MF1, but not F1, embryos to the blastocyst stage and probably functions as part of a metabolic response to oxidative damage to mitochondria and (iii) exposure to glucose at some time during early cleavage is essential for full development to blastocysts. None of the culture conditions examined affected significantly the increase in concentration of reactive oxygen species in late two-cell embryos in vitro, although F1 embryos in vitro often had lower peroxide concentrations than MF1 embryos. A decline in oxygen tension from 20 to 50% had no consistent effect on culture to the blastocyst stage or production of reactive oxygen species. Aminooxyacetate, an inhibitor of transaminase activity, prevented non-blocking embryos from developing beyond G2 of the second cell cycle. It is concluded that the chelation of transitional metals provides the most effective method of overcoming the block to development in vitro.  相似文献   

7.
Although numerous investigations have demonstrated the beneficial effects of co-culture system of different somatic cells on in vitro development of embryos, the effects of conditioned-media of co-culture cells have not been well documented. The objective of this study was to compare the effects of human granulosa cells co-culture system and its conditioned medium on the developmental rate of mouse embryos in vitro. Two sets of experiments were undertaken: in the first one 317 mouse one-cell embryos were cultured in human granulosa cell co-culture system (GC). Ham's F10 medium conditioned with granulosa cells (CM) and non-conditioned Ham's F10 for 120 h. In the second experiment. 391 late two-cell embryos were cultured in the 3 fore-mentioned culture treatments for 72 h. Embryos were obtained from NMRI mice. Granulosa cells were collected from patients undergoing an IVF program during oocyte pickup. In the first set of experiments, 23.6, 14.5 and 11.1% of one-cell embryos passed two-cell block and continued growing to 4-cell in GC, CM and HF, respectively. This index in GC was significantly different from two other treatments. Also significantly more embryos reached blastocyst stage in GC compared with two other treatments. The blastocyst rate was not significantly different between CM and HF. In the second set of experiments the proportion of blastocyst stage was significantly higher in CM than that in HF and lower than that in GC. In conclusion, although human granulosa cell-conditioned medium has beneficial effects on mouse embryo development, it was not as effective as co-culture of these cells.  相似文献   

8.
The aim of this study was to assess development of diploid and tetraploid in vivo derived pig embryos cultured in a modified medium NCSU 37 in an atmosphere with reduced concentration of oxygen. The tetraploid embryos were produced by electrofusion of two-cell embryos that had been cultured in vitro from the one-cell stage before fusion (cultured two-cell embryos) or by fusion of freshly recovered two-cell embryos. Development to blastocyst stage of tetraploid embryos, generated from the cultured two-cell embryos was significantly inferior to the development of control one-cell embryos (29.1 +/- 9.7% versus 66.8 +/- 9.7%; P < 0.05). However, development of tetraploid embryos produced from the freshly recovered two-cell embryos and control two-cell embryos was very similar (89.9 +/- 6.1% versus 81.3 +/- 3.4%). Detection of chromosomes 1 and 10 by in situ hybridization showed that more than 85% of the cultured control embryos were diploid while 15% of the embryos were mosaic. Among the fused embryos 50% were tetraploid, 29% mosaic and 21% diploid. These data indicate that the modified medium NCSU 37 provides optimum environment for pre-implantation development of pig diploid and tetraploid embryos.  相似文献   

9.
JY Zhang  YF Diao  HR Kim  DI Jin 《PloS one》2012,7(7):e40433
X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature oocyte spindles and abundant in the nucleus at the germinal vesicle (GV) stage. However, in preimplantation embryos, XBP-1 was solely detected in the cytoplasm at the one-cell stage. The density of XBP-1 was higher in the nucleus than the cytoplasm at the two-cell, four-cell, eight-cell, morula, and blastocyst stages. Furthermore, RT-PCR analysis confirmed active XBP-1 mRNA splicing at all preimplantation embryo stages, except the one-cell stage. Tunicamycin (TM), an ER stress inducer used as a positive control, promoted an increase in the density of nuclear XBP-1 at the one-cell and two-cell stages. Similarly, culture medium supplemented with 25 mM sorbitol displayed a remarkable increase active XBP-1 expression in the nuclei of 1-cell and 2-cell embryos. Conversely, high concentrations of TM or sorbitol led to reduced nuclear XBP-1 density and significant ER stress-induced apoptosis. Tauroursodeoxycholic acid (TUDCA), a known inhibitor of ER stress, improved the rate of two-cell embryo development to blastocysts by attenuating the expression of active XBP-1 protein in the nucleus at the two-cell stage. Our data collectively suggest that endogenous XBP-1 plays a role in normal preimplantation embryonic development. Moreover, XBP-1 splicing is activated to generate a functional form in mouse preimplantation embryos during culture stress. TUDCA inhibits hyperosmolar-induced ER stress as well as ER stress-induced apoptosis during mouse preimplantation embryo development.  相似文献   

10.
One-cell and two-cell embryos from three random-bred strains of mice–CF1, Dub:(ICR), and CFW (Swiss-Webster)–were cultured to the blastocyst stage in Spindle's, Earle's, Ham's F10, Whittingham's T6, or Hoppe and Pitts' medium. CFW embryos were more successful than CF1 and Dub:(ICR) embryos in developing to the blastocyst stage in all five media. Dub:(ICR) and CFW two-cell embryos showed the best development in Spindle's, Whittingham's T6, and Hoppe and Pitts', whereas CF1 two-cell embryos were most successful in developing in Hoppe and Pitts' medium. Similar results were obtained with one-cell embryos, although fewer developed to the blastocyst stage, and T6 rather than Hoppe and Pitts' medium sustained the best development of CF1 one-cell embryos. For all strains, the least successful development was in Ham's F10, but CFW embryos did show good development in this medium. In addition to the effects of various media on mouse embryo development, our results indicate that the strain of mouse used for the bioassay of media is of critical importance. Random-bred CFW (Swiss-Webster) mice are as suitable as a hybrid strain for this purpose.  相似文献   

11.
12.
Hamster early two-cell embryos developed to the expanded blastocyst stage within the isolated mouse ampulla maintained in organ culture system. Mouse ampullae isolated at different times after treating the mice with human chorionic gonadotropin (hCG) (0–72 h) or pregnant mare's serum gonadotropin (PMSG) (30–32 h) were flushed with culture medium, and hamster early two-cell embryos were introduced into these ampullae. Mouse ampullae isolated at 14–32 h after hCG injection were more favorable for the development of the embryos than those isolated at 70–72 h. When mouse ampullae were isolated 30–32 h after hCG or PMSG treatment, 39% of the cultured eggs developed, some of them to the expanded blastocyst stage after additional culture for 65–70 h. These results indicate that unknown oviductal factors stimulate the development of hamster early two-cell embryos, and these factors are under the control of hCG or PMSG. In addition, these factors are common to the mouse and hamster.  相似文献   

13.
The objective of this study was to compare iso-osmolar concentrations (1.5 M) of 1,2-propanediol, glycerol, dimethylsulphoxide and a combination of 1 M propanediol + 0.5M glycerol (PDGLY) as cryoprotectants for murine ovulated oocytes and one-cell embryos. A higher (P < 0.01) percentage of one-cell embryos developed to the two-cell stage when frozen-thawed with 1,2-propanediol (83%) as compared with glycerol (43%), dimethylsulfoxide (51%) or PDGLY (7%). Data recalculated on the basis of two-cell embryos/number of normal one-cell embryos after thawing indicated no differences among single cryoprotectant groups. More (P < 0.01) frozen-thawed, in-vitro fertilized oocytes developed to the two-cell stage when 1,2-propanediol (35%) was used as cryoprotectant as compared with glycerol (15%). Freezing-thawing resulted in a reduced number of two-cell embryos after oocytes were fertilized in-vitro as compared with fresh oocytes. 1,2-propanediol was a better cryoprotectant than glycerol, dimethylsulphoxide or PDGLY for deep freezing of murine oocytes or one-cell embryos.  相似文献   

14.
The development of one- and two-cell mouse embryos to morula-blastula stages was followed in vitro after treatment with low doses of U.V.-light, ionizing radiation or N-acetoxy-2-fluorenylacetamide. Exposure of one-cell embryos to either radiation source 18 and 24 hours after human chorionic gonadotropin injections prevented maturation, most embryos being arrested at the one-cell stage and a few at the two-cell stage. Two-cell embryos, however, were not sensitive to low doses of either U.V. or X-irradiation and developed normally. Treatment of early one-cell embryos with the carcinogen, N-acetoxy-2-fluorenyl-acetamide (0-7 muM), also arrested development, whereas exposure of late one-cell embryos did not completely prevent maturation to morula-blastula stages. Exposure of two-cell embryos to the same concentration of carcinogen had no effect on their development to blastulas. Results with all three agents showed that mouse embryos at the one-cell stage are more sensitive than those at the two-cell stage, as judged by their ability to develop in vitro.  相似文献   

15.
为探讨小鼠细胞分裂周期25B(CDC25B)蛋白149位丝氨酸磷酸化状态对小鼠1 细胞期受精卵中CDC25B的亚细胞定位和发育的影响,应用定制的CDC25B-pS149位的 磷酸化和非磷酸化抗体检测小鼠1-细胞期受精卵各细胞时期的磷酸化和非磷酸化状 态;应用免疫荧光观察各期受精卵中CDC25B蛋白的定位情况;将质粒pEGFP-CDC25B -WT、pEGFP-CDC25B-S149A和pEGFP-CDC25B-S149D融合质粒及空载体质粒显微注射入 G1期受精卵中,观察不同显微注射组小鼠1-细胞期受精卵中外源性CDC25B蛋白亚细 胞定位.结果显示,CDC25B-S149位丝氨酸在G1和S期被磷酸化,在G2和M期去磷酸化 .1-细胞期受精卵从G2向M期的转换过程中,发生了CDC25B向细胞核区的移位,到2- 细胞初期,部分CDC25B蛋白又从细胞核回到细胞浆.实验结果提示,小鼠1-细胞期受精卵G2/M期转换过程中,CDC25B 的S149位点磷酸化修饰可能是对CDC25B细胞内定 位及其活性的精确调节方式.  相似文献   

16.
Herr CM  Wright RW 《Theriogenology》1988,29(3):765-770
Experiments were designed to evaluate the survival rates of preimplantation mouse embryos of different stages of development in cold culture at 4 degrees C. Several developmental stages, from one-cell to the blastocyst, were stored at 4 degrees C from 1 to 8 d. Viability following cold culture was determined by blastocyst expansion during culture in Whitten's medium at 37 degrees C. Blastocyst formation of nonstored controls ranged from 93 to 100% for all developmental stages tested. Only 3% of one-cell embryos survived 1 d and none survived 2 days at 4 degrees C. Survival improved using two-cell embryos, with 84, 69 and 15% forming expanded blastocysts following storage for 1, 2 and 3 d, respectively. Eighty five and 38% of eight-cell embryos formed expanded blastocysts following cold storage for 3 and 4 d, respectively. Survival rates for cold stored morulae and blastocysts remained above 75% for 6 d but decreased significantly to 30 and 36%, respectively, when stored for 8 d. A large percentage of blastocysts were observed to collapse when placed in cold storage from 1 to 8 d but almost all expanded when placed in culture at 37 degrees C. This study showed that one-cell embryos were particularly sensitive to cold storage compared to later-stage mouse embryos. Cold storage survival increased with increasing age of the embryo; morula and blastocyst survival rate was similar.  相似文献   

17.
This study (1) analyzed fetal development of mouse embryos after oocyte cryopreservation in CJ2, a choline-based medium, (2) examined the effect of culture duration in vitro on subsequent fetal development, and (3) compared survival and fetal development of zygotes frozen in embryo transfer freeze medium (ETFM; sodium-based medium) or CJ2. Unfertilized oocytes and zygotes were cryopreserved using a slow-cooling protocol. After thawing, oocytes were inseminated after drilling a hole in their zona, cultured in vitro either to the two-cell or blastocyst stage, and transferred to the oviducts or uterine horns of recipient mice. In parallel experiments, frozen-thawed zygotes were similarly cultured and transferred. Implantation rates for transferred embryos were high (range 66-88%), regardless of whether they had been frozen as oocytes or zygotes and whether they had been transferred to the oviduct or uterus. However, fetal development was significantly higher when two-cell embryos were transferred. With blastocyst transfer, control embryos implanted and produced a greater proportion of fetuses than did oocytes frozen in CJ2, whereas transfer at the two-cell stage resulted in similar proportions of implantation sites and fetuses. Blastocyst transfer of zygotes cryopreserved in ETFM or CJ2 produced similar fetal development rates (23.6% vs 20.0%), but when frozen-thawed zygotes were transferred at the two-cell stage the fetal development rates were higher in the ETFM group (53.3%) than in the CJ2 group (32.0%). A high proportion (46.7%) of oocytes frozen in CJ2 in a nonprogrammable freezer and plunged at -20 degrees C developed into live offspring. This study shows that in the mouse (1) oocytes frozen in CJ2 can develop into viable fetuses, (2) prolonging culture in vitro has a detrimental effect on embryo transfer outcome, and (3) CJ2 offers no advantage for zygote cryopreservation.  相似文献   

18.
17 beta-Hydroxy-11 beta(4-dimethylaminophenyl)-17 alpha-(1-propynyl)estra-4, 9-dien-3-one (RU486) inhibited the in vitro development of different stages of mouse preimplantation embryos under study. Two-celled embryos, morulae, and early blastocysts were obtained from B6D2F1 mice. The embryos were grown in Ham F-10 nutrient mixture (with glutamine) supplemented with sodium bicarbonate (2.1 g/L), calcium lactate (282 mg/L), and bovine serum albumin (fraction V, 3 mg/mL) at 37 degrees C in a humidified incubator supplied with 5% CO2 in air. RU486 was added to the culture medium at concentrations of 1, 5, 10, and 20 micrograms/mL. Culture medium with 0.05% ethanol served as the control. In vitro growth of embryos was assessed by the following criteria: (i) two-celled stage embryo development to blastocyst stage after 72 h, (ii) morula stage grown to blastocyst stage after 24 h, and (iii) early blastocyst stage development to hatching blastocyst after 12 h, in culture. RU486 inhibited the in vitro development of two-celled embryos, morulae, and early blastocysts at concentrations of 5, 10, and 20 micrograms/mL culture medium (p less than 0.001). The inhibitory effect of RU486 at these concentrations on the development of all the stages of embryos under study was irreversible. However, RU486 did not affect embryo development at 1 microgram/mL culture medium. The study indicates the direct adverse effect of RU486 at 5 micrograms/mL and higher concentrations in culture medium on the development of mouse preimplantation embryos in vitro, and it encourages its further investigation as a postcoital contraceptive in animal models and humans.  相似文献   

19.
Developmental potential of isolated blastomeres from early murine embryos   总被引:1,自引:0,他引:1  
Experiments were designed to evaluate the effect of blastomere separation on blastocoele formation and development of viable fetuses. Two-cell and four-cell murine embryos were dissociated into individual blastomeres and cultured to the blastocyst stage. For embryos of both stages, zona removal and blastomere separation reduced (P<0.05) the number of viable embryos at the onset of culture and reduced (P<0.01) the frequency of continuation of development of blastomeres to the blastocyst stage. Attempts to repeatedly split two-cell stage embryos decreased in vitro development to blastocysts. The number of cells in two-cell embryos that were cultured to blastocyst was not different for control (64.8 +/- 11.5) or for two-cell embryos cultured without the zona pellucida (60.9 +/- 10.1) but was reduced (P<0.01) for one-half embryos that were cultured to blastocysts (35.6 +/- 10.6). The cell number of blastocysts obtained from dissociated four-cell (1/4) embryos (17.4 +/- 1.4) was similarly reduced (P<0.01). In vivo development was assessed after cultured embryos were transferred to the uteri of day 3 pseudopregnant females. Zona free intact embryos (2/36, 6%) and zona free half embryos (7/36; 19%) developed less frequently (P<0.05) than intact controls (45/100). Noncultured morula briefly exposed to pronase to thin the zona had similar impaired development. Embryos with thinned zona or no zona developed less frequently (21/82, 2/72 respectively, P<0.05) than nonpronase-treated controls (50/83).  相似文献   

20.
Mouse preimplantation embryos consume pyruvate preferentially during the early developmental stages, before glucose becomes the predominant energy substrate in the blastocyst. To investigate the importance of the switch to glucose utilization at the later developmental stages, mouse embryos from F1 hybrid mice (CBA/Ca × C57BL/6) were cultured from the one-and two-cell stages (22 and 46 h post hCG, respectively) for 5 days in a modified medium, M16, containing 0.33 mM pyruvate and 5 or 23 mM D+L-lactate, in the presence and absence of 1 mM glucose (M16+G and M16-G, respectively). Nutrient uptakes were also determined over this time. Some embryos cultured in M16-G were transferred to M16+G at 94 or 118 h post hCG. Embryos cultured from the two-cell stage in M16+G exhibited the characteristic fall in pyruvate consumption between the morula and the blastocyst stage; those cultured from the two-cell stage in M16-G compensated for the lack of glucose by consuming increasing amounts of pyruvate, from 2.78 pmol/embryo/h at 58 h post hCG to 5.21 pmol/embryo/h at 154 h post hCG. However, the percentage of embryos developing to the blastocyst stage, the hatching rate, and blastocyst cell numbers (50.6 ± 2.5 [28] vs. 105 ± 3.8 [37]) were all lower in this group. When exposed to glucose at 94 or 118 h post hCG, embryos cultured from the two-cell stage in M16-G readily consumed glucose in preference to pyruvate, although the characteristic fall in pyruvate consumption was not observed. One-cell embryos cultured continuously in M16-G were only able to develop to the morula stage, after which time they degenerated. In these embryos pyruvate was readily consumed between 22 and 94 h post hCG, before falling from 2.77 pmol/embryo/h at 83 h post hCG to 0.045 pmol/embryo/h at 130 h post hCG. Transfer of these embryos to M16+G at 94 and 118 h post hCG did not support development to the hatching blastocyst stage. The results show that mouse preimplantation embryos from F1 hybrid mice (CBA/Ca × C57BL/6) need only be exposed to glucose for less than 24 h between 22 and 94 h post hCG in order to develop from the morula to the blastocyst stage in vitro. However, the exposure time needs to be increased to between 24 and 72 h in order that blastocyst cell numbers reach control levels. The importance of glucose before the morula stage may relate to the need to synthesize glycogen for later use. If the obligatory requirement for glucose is fulfilled, embryos are able to utilize pyruvate in the absence of glucose at the later stages of development. These results show that the mouse preimplantation embryo can, to some extent, adapt metabolically to changes in its external environment. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号