首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
We have compared the biodiversity variations in moth communities between unmanaged forests and commercial forests in a mountainous environment (Pyrenees France). The aim was to evaluate the impact of forestry activities on moth diversity. The data collected from the insects were analysed with a Bayesian specific similarity index (noted SSP index) and by statistical biodiversity indexes comparison. It was seen that diversity and richness were decreased in the plantation compared to the unmanaged forest. Interestingly, the composition of the communities of moths was shown to be not only related to the presence/absence of host plants, but also to be in relation with changes in the differences in forest architecture (i.e. the relative coverage by the different vegetation levels). However, the moth community in the commercial forest still has a high capacity to converge with the moth community present in more natural forests. We report here a list of 177 species of moths, providing information on the distribution of some uncommon species, poorly studied as yet in the Pyrenees.  相似文献   

2.
Here we report on ecology and biodiversity of fungi in a unique mycological sanctuary in Britain, where data on species composition have been collected since 1994. To complement the biodiversity data by the information on the fungal ecological interactions and their role in the overall ecosystem functioning, soil properties and the composition of forest litter and field layer, bacterial population numbers and fungal biomass (in terms of ergosterol) were measured in 8 plots covered with different vegetations (beech, birch, birch-oak-beech, grass) over a May–Aug. period, and the results were analysed by correlation analysis and stepwise regression modelling together with data on protozoa and nematodes available from parallel research. The results highlighted the complexity of factors influencing temporal dynamics and spatial variability of fungal biomass in soil and forest litter. Most of the registered interactions appeared to be transient, and this should be taken into account while interpreting environmental observations. Interpretation of the specific relationships is given and implications for further research and overall ecosystem functioning are discussed.  相似文献   

3.
The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved —in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age(estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted(the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns(DBH 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied with tree shape, forest type, and damage type. Understanding this dependency will guide restoration after freezing rain and snow disturbances.  相似文献   

4.
Xishuangbanna is located at the northern edge of the distribution of tropical forests in Southeast Asia, and it has a very high frequency of radiation fog, especially during the dry season (November-April). In this study, rainwater, throughfall, intercepted fog water (fog drip) by forest canopy, and stream water were collected in January 2002 and December 2003 for stable isotopic analysis at a tropical seasonal rain forest site in Xishuangbanna, Southwest China. The objective of the study is to estimate the evaporation rate from the forest floor. The stable hydrogen (δD) and oxygen isotope composition (δ18O) of rainwater, throughfall, fog drip, and stream water was determined using an isotope ratio mass spectrometer. Stream water during the non-storm runoff period was considered to reflect the effect of evaporation from the forest floor. The evaporation rates from the forest floor were estimated using isotope composition values in stream water and the total throughfall was estimated using the Rayleigh distillation equation under equilibrium conditions. The results indicated that the annual weighted means of δD and δ18O in fog drip were consistently more enriched than those of rainwater and stream water, and the fog drip was thought to contain water that had evaporated and recycled. The weighted means of δD and δ18O in stream water during the non-storm runoff period were 5.69% and 0.39% more enriched than those of the total throughfall (rain throughfall + fog drip) in 2002, while in 2003 these were 5.05% and 0.28%, respectively. Evapotranspiration in the humid year 2002 and the dry year 2003, computed from the water balance, was 1186 mm and 987 mm, respectively, which was quite low when compared with the values reported in some humid tropical forests. Consequently, the evaporation rate from the forest floor was 5.1% of the evapotranspiration in 2002, and 3.1% in 2003. The lower evaporation rate was thought to be mainly a result of the influence of the high frequency of heavy radiation fog on the rain forest during the night in the dry season (November-April).  相似文献   

5.
Liu W J  Li P J  Li H M  Duan W P 《农业工程》2006,26(5):1303-1310
Xishuangbanna is located at the northern edge of the distribution of tropical forests in Southeast Asia, and it has a very high frequency of radiation fog, especially during the dry season (November-April). In this study, rainwater, throughfall, intercepted fog water (fog drip) by forest canopy, and stream water were collected in January 2002 and December 2003 for stable isotopic analysis at a tropical seasonal rain forest site in Xishuangbanna, Southwest China. The objective of the study is to estimate the evaporation rate from the forest floor. The stable hydrogen (δD) and oxygen isotope composition (δ18O) of rainwater, throughfall, fog drip, and stream water was determined using an isotope ratio mass spectrometer. Stream water during the non-storm runoff period was considered to reflect the effect of evaporation from the forest floor. The evaporation rates from the forest floor were estimated using isotope composition values in stream water and the total throughfall was estimated using the Rayleigh distillation equation under equilibrium conditions. The results indicated that the annual weighted means of δD and δ18O in fog drip were consistently more enriched than those of rainwater and stream water, and the fog drip was thought to contain water that had evaporated and recycled. The weighted means of δD and δ18O in stream water during the non-storm runoff period were 5.69% and 0.39% more enriched than those of the total throughfall (rain throughfall fog drip) in 2002, while in 2003 these were 5.05% and 0.28%, respectively. Evapotranspiration in the humid year 2002 and the dry year 2003, computed from the water balance, was 1186 mm and 987 mm, respectively, which was quite low when compared with the values reported in some humid tropical forests. Consequently, the evaporation rate from the forest floor was 5.1% of the evapotranspiration in 2002, and 3.1% in 2003. The lower evaporation rate was thought to be mainly a result of the influence of the high frequency of heavy radiation fog on the rain forest during the night in the dry season (November-April).  相似文献   

6.
As the largest carbon pool of the terrestrial ecosystem, forest plays a key role in sequestrating and reserving greenhouse gases. With the method of replacing space with time, the typical restoration ecosystems of herb (dominated by Deyeuxia scabrescens, P1), shrub (dominated by Salix paraqplesia, P2), broadleaf (dominated by Betula platyphylla, P3), mixed forest (dominated by Betula spp. and Abies faxoniana, P4), and climax (dominated by Abies faxoniana, P5) were selected to quantify the carbon stock and allocation in the subalpine coniferous forest in Western Sichuan (SCFS). The results indicated that the soil organism carbon (SOC) stock decreased with the depth of soil layer, and the SOC per layer and the total SOC increased largely with the vegetation restoration. The contribution of SOC to the carbon stock of ecosystems decreased with the vegetation restoration from 89.45% to 27.06%, while the quantity was from 94.00 to 223.00 t C hm?2. The carbon stock in ground cover increased with the vegetation restoration, and its contribution to the carbon stock of ecosystems was similar (3–4% of the total). Following the vegetation restoration, the plant carbon stock multiplied and reached to 430.86 ± 49.49 t C hm?2 at the climax phase. During the restoration, the carbon stock of different layers increased, and the contribution of belowground to the carbon stock of ecosystems decreased sharply. The carbon stock on ecosystem scale of the climax phase was 5.89 times that of the herb phase. Our results highlighted that the vegetation restoration in SCFS was a large carbon sink.  相似文献   

7.
酸雨对缙云山林地黄壤汞溶出的影响   总被引:8,自引:0,他引:8  
Forest yellow soil and arable yellow soil in Jinyun Mountain were collected to study the effect of simulated acid rain(adjusted to pH 2.0, 3.0, 4.0 and 5.0) on the Hg leaching from soils by the methods of static extraction and dynamic leaching. The results showed that in forest yellow soils, surface accumulation of Hg occurred, and the accumulated Hg was easier to be leached out than that in arable yellow soil by acid rain. The amount of leached Hg was the largest at pH 4.0. To abate the risk of Hg pollution in water bodies by the Hg leaching from this forest soil, the Mountain should be closed, and timber-felling should be forbidden.  相似文献   

8.
The value of biodiversity is well-known, but how diversity performs its ecosystem function and provides services is less clear (Ehrlich, 1994; Grime, 1997; Wall, 2004, Xie et al., 2006 ). In the last two decades, tremendous efforts have been devoted to investigating the biodiversity effects on ecosystem functioning (Hooper et al., 2005 ). In most cases, particularly in grassland seeding experiments, productivity (i. e., rate of biomass production) has been used as the sole measure of ecosystem functioning, while what is being produced (i. e., the quality or product diversity) is frequently ignored. However, ecosystem functioning, like many other things in our life (e. g., the impacts of scientific papers), is a multifaceted concept and is far more than simply productivity and should be assessed by beth quantity and quality1). Here we call for a reevaluation of the current measures used to evaluate biodiversity' s ecosystem function. Although the quantitative (e. g., productivity) and qualitative (product quality) aspects may be assessed separately but their combination should be used for overall evaluation of ecosystem functioning. This is because beth quantity and quality measures are important to beth basic ecological research and land management, as we outline below.  相似文献   

9.
Secondary forests and human-made forest gaps are conspicuous features of tropical landscapes.Yet,behavioral responses to these aspects of anthropogenically modified forests remain poorly investigated.Here,we analyze the effects of small human-made clearings and secondary forests on tropical bats by examining the guild-and species-level activity patterns of phyllostomids sampled in the Central Amazon,Brazil.Specifically,we contrast the temporal activity patterns and degree of temporal overlap of 6 frugivorous and 4 gleaning animalivorous species in old-growth forest and second-growth forest and of 4 frugivores in old-growth forest and forest clearings.The activity patterns of frugivores and gleaning animalivores did not change between old-growth forest and second-growth,nor did the activity patterns of frugivores between old-growth forest and clearings.However,at the species level,we detected significant differences for Artibeus obscurus(old-growth forest vs.second-growth)and A.concolor(old-growth forest vs.clearings).The degree of temporal overlap was greater than random in all sampled habitats.However,for frugivorous species,the degree of temporal overlap was similar between old-growth forest and second-growth;whereas for gleaning animalivores,it was lower in second-growth than in old-growth forest.On the contrary,forest clearings were characterized by increased temporal overlap between frugivores.Changes in activity patterns and temporal overlap may result from differential foraging opportunities and dissimilar predation risks.Yet,our analyses suggest that activity patterns of bats in second-growth and small forest clearings,2 of the most prominent habitats in humanized tropical landscapes,varies little from the activity patterns in old-growth forest.  相似文献   

10.
Evaluating the annual sources and sinks of carbon from land-use change helps con-strain other terms in the global carbon cycle and may help countries choose how to comply with commitments for reduced emissions. This paper presents the results of recent analyses ofland-use change in China and tropical Asia. The original forest areas are estimated to have cov-ered 546×10~6 ha in tropical Asia and 425×10~6 ha in China. By 1850, 44% of China's forests had been cleared, and another 27% was lost between 1850 and 1980, leaving China with 13% forestcover (29% of the initial forest area). Tropical Asia is estimated to have lost 26% of its initial forestcover before 1850 and another 33% after 1850. The annual emissions of carbon from the two regions re-flect the different histories over the last 150 years, with China's emissions peaking in thelate 1950s (at 0.2-0.5 Pg C·a~(-1)) and tropical Asia's emissions peaking in 1990s (at 1.0 Pg C·a~(-1)). Despite the fact that most deforestation has been for new agricultural land, the majority ofthe lands cleared from forests in China are no longer croplands, but fallow or degraded shrublands.Unlike croplands, the origins of these other lands are poorly documented, and thus add consider-able uncertainty to estimates of flux before the 1980s. Nevertheless, carbon emissions from China seem to have decreased since the 1960s to nearly zero at present. In contrast, emissions of car-bon from tropical Asia were higher in the 1990s than that at any time in the past.  相似文献   

11.
Tropical forests continue to vanish rapidly, but few long-term studies have ever examined if and how the lost forests can be restored. Based on a 45-year restoration study in south China, we found that a tropical rain forest, once completely destroyed, could not recover naturally without deliberate restoration efforts. We identified two kinds of thresholds that must be overcome with human ameliorative measures before the ecosystem was able to recover. The first threshold was imposed primarily by extreme physical conditions such as exceedingly high surface temperature and impoverished soil, while the second was characterized by a critical level of biodiversity and a landscape context that accommodates dispersal and colonization processes. Our three treatment catchments (un-restored barren land, single-species plantation, and mixed-forest stand) exhibited dramatically different changes in biodiversity and ecosystem functioning over 4 decades. The mixed forest, having the highest level of biodiversity and ecosystem functioning, possesses several major properties of tropical rain forest.These findings may have important implications for the restoration of many severely degraded or lost tropical forest ecosystems.  相似文献   

12.
附生兰科植物是热带林附生植物的主要类群之一,对于维持热带林生态系统的物种多样性及生态功能具有重要的作用。以海南岛霸王岭国家级自然保护区内的6种热带原始林类型(热带季雨林、低地雨林、热带针叶林、山地雨林、山地常绿林及山顶矮林)中的附生兰科植物为研究对象,通过样带调查(每个森林类型设置12个10m×50m的样带,记录每个样带内胸径(DBH)≥5cm的树木及藤本上附生兰科植物的物种名称、株数及附生位置)分析了附生兰科植物的物种多样性、附生位置及其在不同森林类型中的分布规律。结果表明:1)3.6hm2森林调查样带内共记录到附生兰科植物9634株,分属于26属60种;2)除趋势对应分析(DCA)结果表明,6种森林类型中的附生兰科植物可分成5组(其中,山地常绿林与山顶矮林内的附生兰科植物归为一组);3)分布海拔范围相临近的森林类型的附生兰科植物具有较高的相似性,山地常绿林和山顶矮林附生兰科植物的相似性最高(88.9%);4)6种森林类型中,较高海拔的3种森林类型(山地雨林、山地常绿林和山顶矮林)中,附生兰科植物的丰富度和多度均显著高于其在较低海拔的3种森林类型(热带季雨林、低地雨林和热带针叶林),其中,附生兰科植物在山地常绿林内的丰富度和多度均最高;5)热带季雨林、低地雨林、热带针叶林及山地雨林内,宿主冠区附生兰科植物的多度均高于干区;山地常绿林内两者之间无显著差异;而山顶矮林干区的附生兰科植物的多度高于冠区;6)调查木上附生兰科植物的发生率在高海拔森林类型均高于其在低海拔森林类型,各森林类型内附生兰科植物的多度及物种丰富度与宿主胸径均存在显著正相关关系。  相似文献   

13.
To meet agendas for biodiversity conservation and mitigation of climate change, large-scale restoration initiatives propose ecological restoration as an alternative that can reconcile these two objectives. In ongoing ecosystem restoration, increased diversity is always associated with increased productivity (and consequent carbon stock), which is among the most important ecosystem functions. The ecological paradigm of this association is that ecosystem biodiversity (B) is positively related to both ecosystem functions and services (EF and ES). However, BEF and BES relationships vary spatially and temporally, which makes understanding these relationships relevant and important for practical restoration actions. In this study, we asked how biodiversity and carbon stock recovery occurs during tropical forest restoration. We reviewed literature of the relationships between BEF and BES in the context of ecological restoration and asked whether ecological restoration can recover both. In addition, we conducted a metadata analysis of studies on the recovery of biodiversity and biomass in regenerating tropical forests (n = 83) to find the best model that describes this relationship. In general, studies showed that ecosystem biodiversity and productivity are positively related, and that restoration can recover both. We found an asymptotic and positive correlation between biodiversity and biomass in tropical forests, suggesting limitation of the mutual gains of these two ecosystem properties during restoration. We discuss these results in the context of ecological theory and the practice of ecological restoration.  相似文献   

14.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

15.
Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity.  相似文献   

16.
This paper is intended to provide a brief review of the tropical seasonal forest, one type of the tropical moist forests in monsoon Asia. It will also focus on and summarise issues of current concern in relation to their depletion and global environmental issues. Tropical moist forests occur in the rainy tropical and monsoon tropical climate types. The tropical moist evergreen forest or the tropical rain forest, which account for two-thirds of the tropical moist forests are rich in biodiversity and contain valuable tropical hardwood. The tropical moist deciduous forest or the tropical seasonal forest which lie along the fringes of tropical rain forest, are less complex than the tropical rain forest and have more distinct wet and dry periods. Broadleaved deciduous trees of the genera Tectona, Shorea, and Dipterocarpus are predominantly in this forest type. Currently estimates have found that more than 17 million hectares of forest mainly tropical moist forests are being lost each year. There is a widespread recognition that agriculture and the burning of tropical moist forests contribute to global warming but to a much lesser extent than the combustion of fossil fuels and industrial activities in the developed world.  相似文献   

17.
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.  相似文献   

18.
Forested tropical landscapes around the world are being extensively logged and converted to agriculture, with serious consequences for biodiversity and potentially ecosystem functioning. Here we investigate associations between habitat disturbance and functional diversity of ants and termites—two numerically dominant and functionally important taxa in tropical rain forests that perform key roles in predation, decomposition, nutrient cycling and seed dispersal. We compared ant and termite occurrence and composition within standardised volumes of soil and dead wood in old growth forest, logged forest and oil palm plantation in Sabah, Malaysian Borneo. Termites occurred substantially less frequently in converted habitats than in old growth forest, whereas ant occurrences were highest in logged forest and lowest in old growth forest. All termite feeding groups had low occurrence in disturbed habitats, with soil feeders occurring even less frequently than wood feeders. Ant functional groups showed more variable associations, with some opportunist and behaviourally dominant groups being more abundant in degraded habitats. The importance of ants and termites in tropical ecosystems and such differing patterns of assemblage variation suggest that ecosystem functioning may be significantly altered in converted habitats.  相似文献   

19.
Conservation and restoration interventions can be mutually reinforcing and are converging through an increased focus on social dimensions. This paper examines how to more effectively integrate the complementary goals of conservation and restoration of tropical forests. Forest conservation and restoration interventions are integral components of a broad approach to forest ecosystem and landscape management that aims to maintain and restore key ecological processes and enhance human well‐being, while minimizing biodiversity loss. The forest transition model provides a useful framework for understanding the relative importance of forest conservation and restoration interventions in different regions. Harmonizing conservation and restoration presents serious challenges for forest policy in tropical countries, particularly regarding the use and management of secondary forests, fallow vegetation, and forests degraded by logging and fire. Research to implement restoration more effectively in tropical regions can be stimulated by transforming questions that initially focused on conservation issues. Examination of papers published in Biotropica from 2000–2018 shows that most studies relevant to tropical forest conservation do not address forest restoration issues. Forest restoration studies, on the other hand, show a consistent association with conservation issues. There is much scope for further integration of conservation and restoration in research, practice, and policy. Securing a sustainable future for tropical forests requires developing and applying integrated approaches to landscape management that effectively combine knowledge and tools from multiple disciplines with practical experience and engagement of local stakeholders. Abstract in Portuguese is available with online material.  相似文献   

20.
Old‐growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human‐modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio‐economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land‐use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio‐temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well‐preserved biodiversity‐rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号