首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Kininogens, the major plasma cystatin-like inhibitors of cysteine cathepsins, are degraded at sites of inflammation, and cathepsin B has been identified as a prominent mediator of this process. Cathepsin B, in contrast to cathepsins L and S, is poorly inhibited by kininogens. This led us to delineate the molecular interactions between this protease and kininogens (high molecular weight kininogen and low molecular weight kininogen) and to elucidate the dual role of the occluding loop in this weak inhibition. Cathepsin B cleaves high molecular weight kininogen within the N-terminal region of the D2 and D3 cystatin-like domains and close to the consensus QVVAG inhibitory pentapeptide of the D3 domain. The His110Ala mutant, unlike His111Ala cathepsin B, fails to hydrolyze kininogens, but rather forms a tight-binding complex as observed by gel-filtration analysis. Ki values (picomolar range) as well as association rate constants for the His110Ala cathepsin B variant compare to those reported for cathepsin L for both kininogens. Homology modeling of isolated inhibitory (D2 and D3) domains and molecular dynamics simulations of the D2 domain complexed with wild-type cathepsin B and its mutants indicate that additional weak interactions, due to the lack of the salt bridge (Asp22-His110) and the subsequent open position of the occluding loop, increase the inhibitory potential of kininogens on His110Ala cathepsin B.  相似文献   

2.
3.
A role for N-linked oligosaccharides on the biochemical properties of recombinant α-l-arabinofuranosidase 54 (AkAbf54) defined in glycoside hydrolase family 54 from Aspergillus kawachii expressed in Pichia pastoris was analyzed by site-directed mutagenesis. Two N-linked glycosylation motifs (Asn83–Thr–Thr and Asn202–Ser–Thr) were found in the AkAbf54 sequence. AkAbf54 comprises two domains, a catalytic domain and an arabinose-binding domain classified as carbohydrate-binding module 42. Two N-linked glycosylation sites are located in the catalytic domain. Asn83, Asn202, and the two residues together were replaced with glutamine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the wild-type and mutant enzymes expressed in P. pastoris were examined. The N83Q mutant enzyme had the same catalytic activity and thermostability as the wild-type enzyme. On the other hand, the N202Q and N83Q/N202Q mutant enzymes exhibited a considerable decrease in thermostability compared to the glycosylated wild-type enzyme. The N202Q and N83Q/N202Q mutant enzymes also had slightly less specific activity towards arabinan and debranched arabinan. However, no significant effect on the affinity of the mutant enzymes for the ligands arabinan, debranched arabinan, and wheat and rye arabinoxylans was detected by affinity gel electrophoresis. These observations suggest that the glycosylation at Asn202 may contribute to thermostability and catalysis.  相似文献   

4.
Wang H  Zhang W  Zhao J  Zhang L  Liu M  Yan G  Yao J  Yu H  Yang P 《Journal of Proteomics》2012,75(4):1375-1385
The membrane glycoprotein CD82 (KAI1) has attracted increasing attention as a suppressor of cell migration, related tumor invasion, as well as metastasis. The glycosylation of CD82 has been shown to be involved in a correlative cell adhesion and motility. However, the N-glycosylation pattern of CD82 has not been described yet. In the current study, a detailed characterization of the recombinant human CD82 N-linked glycosylation pattern was conducted by employing an integrative proteomic and glycomic approach, including glycosidase and protease digestions, glycan permethylation, MS analyses, site-directed mutagenesis, and lectin blots. The results reveal three N-glycosylation sites, and further demonstrate a putative glycosylation site at Asn157 for the first time. A highly heterogeneous pattern of N-linked glycans is described, which express distinct carbohydrate epitopes, such as bisecting N-acetylglucosamine, (α-2,6) N-acetylneuraminic acid, and core fucose. These epitopes are highly associated with various biological functions, including cell adhesion and cancer metastasis, and can possibly influence the anti-cancer inhibition ability of CD82.  相似文献   

5.
Tsai IH  Wang YM  Hseu MJ 《Biochimie》2011,93(2):277-285
Trimucrotoxin (TmCT) is an Asn6-containing phospholipase A2 (PLA2) from Protobothrops mucrosquamatus (pit-viper) venom. In an attempt to characterize the amino acid residues responsible for the neurotoxic and anticoagulant activities of TmCT, the recombinant fusion proteins of TmCT wild type and mutants were expressed in Escherichia coli. Correct refolding and processing of 37 TmCT mutants were confirmed by their HPLC retention times, circular dichroism spectra, and masses obtained from ESI-MS spectrometry. Each mutant was assayed by pH-stat titration using zwitterionic as well as anionic micelle substrates, and the neurotoxicity was evaluated by using the contractile responses of chick biventer cervicis muscles. The results demonstrated that the residues Asn1, Asn6, Lys7, Ile11, Met12, Gly53, Thr79, His108 and Met118 are important to TmCT neurotoxicity. Through various tests, we also confirmed that enzymatic activity, as opposed to binding to Factor Xa, was a necessary part of TmCT’s anticoagulant effect. In addition, pulldown assays of the WT and selected mutants revealed that TmCT’s in vitro binding to crotoxin acidic subunit may involve a broad surface area. We conclude that the hot spot mutations at specific positions 53, 79, 108, and 118 during the pit-viper Asn6-PLA2 evolution regulate their neurotoxicities, and that many of the neurotoxic site residues and the anticoagulant mechanism of TmCT are different from those of ammodytoxin A (a true-viper venom neurotoxic PLA2).  相似文献   

6.
Pyridoxal kinase (PLK; EC 2.7.1.35) is a key enzyme for vitamin B6 metabolism in animals. It catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal 5′-phosphate, an important cofactor for many enzymatic reactions. Bombyx mori PLK (BmPLK) is 10 or more residues shorter than mammalian PLKs, and some amino acid residues conserved in the PLKs from mammals are not maintained in the protein. Multiple sequence alignment suggested that amino acid residues Thr47, Ile54, Arg88, Asn121 and Glu230 might play important roles in BmPLK. In this study, we used a site-directed specific mutagenesis approach to determine the functional significance of these particular amino acid residues in BmPLK. Our results demonstrated that the mutation of Asn121 to Glu did not affect the catalytic function of BmPLK. The corresponding site-directed mutants of Thr47 to Asn, Ile54 to Phe, and Arg88 to Ile displayed a decreased catalytic efficiency and an elevated Km value for substrate relative to the wild-type value, and no enzyme activity could be detected in mutant of Trp230 to Glu. Circular dichroism analysis revealed that the mutation of Trp230 to Glu resulted in mis-folding of the protein. Our results provided direct evidence that residue Trp230 is crucial to maintain the structural and functional integrity of BmPLK. This study will add to the existing understanding of the characteristic of structure and function of BmPLK.  相似文献   

7.
Extensive evidence demonstrates the pathophysiological importance of NOX1, the catalytic subunit of superoxide-generating enzyme NADPH oxidase, as a source of reactive oxygen species in nonphagocytic cells. However, the biochemical properties of NOX1 have not been extensively characterized due to a lack of specific immunological tools. We used a newly raised NOX1 polyclonal antibody to investigate posttranslational modifications of NOX1 overexpressed in cultured cells and in the colon, where endogenous NOX1 is highly expressed. Immunoblots of lysates from cells expressing NOX1 revealed a doublet of 56 and 60 kDa accompanied by a broad band of 60–90 kDa. Based on differential sensitivity to glycosidases, the doublet was identified as two high-mannose-type glycoforms of NOX1, whereas the broad band represented NOX1 with complex-type N-linked oligosaccharides. Deglycosylated NOX1 migrated at ~53 kDa and N-glycosylation was demonstrated in NOX1 derived from both rat and human. Site-directed mutagenesis identified N-glycosylation sites at Asn161 and Asn241 on the extracellular loop of mouse NOX1. Elimination of N-glycosylation on NOX1 did not affect its electron transferase activity, protein stability, targeting to the cell surface, or localization in F-actin-positive membrane protrusions. Taken together, these data identify the two specific sites of N-linked glycosylation of murine NOX1 and demonstrate that they are not required for normal enzyme activity, protein stability, and membrane trafficking. As is true for NOX2, the contribution of glycosylation in NOX1 to its biologic function(s) merits further study.  相似文献   

8.
Lysostaphin (LYS) is an anti-staphylococcal prokaryotic polypeptide that has been used to avoid Staphylococcus aureus mastitis through transgenic or viral vector approaches exogenously expressed in dairy animals. However, glycosylation of lysostaphin expressed in mammalian cells results in a loss of bioactivity. Until now, the mechanism of site-specific glycosylation of lysostaphin causing this loss of bioactivity remains unknown. An immortalized caprine mammary epithelial cell line (CMEC-08-D) was used to study recombinant lysostaphin fused with goat β-casein, goat lactoferrin (LF) or prokaryotic signal peptides. These constructs were separately ectopically expressed in CMEC-08-D. Results of site-directed mutagenesis show that Asn125 but not Asn232 is the exact glycosylation site of lysostaphin expressed in CMEC-08-D. In addition, the effect of glycosylation of lysostaphin on its staphylolytic activity was identified through bacterial plate assay. The data indicated that wild type and mutated N232Q-lysostaphin (Asn232 to Gln232 substitution) lacked staphylolytic activity. In contrast, mutated N125Q (Asn125 to Gln125 substitution) and N125Q/N232Q-lysostaphin possessed staphylolytic activity. On the other hand, all mutated lysostaphin showed no change in binding ability to S. aureus. This reveals that N-glycosylation at Asn125 of lysostaphin expressed in a eukaryotic system greatly decreases lysostaphin bacteriolytic activity but does not affect its binding ability to S. aureus.  相似文献   

9.
Human cyclooxygenase-2 (hCox-2) is a key enzyme in the biosynthesis of prostaglandins and the target of nonsteroidal anti-inflammatory drugs. Recombinant hCox-2 overexpressed in a vaccinia virus (VV)-COS-7 system comprises two glycoforms. Removal of the N-glycosylation consensus sequence at Asn580(N580Q and S582A mutants) resulted in the expression of protein comprising a single glycoform, consistent with the partial N-glycosylation at this site in the wild-type (WT) enzyme. The specific cyclooxygenase activities of the purified WT and N580Q mutant were equivalent (40 ± 3 μmol O2/min/mg) and titrations with diclofenac showed no difference in inhibitor sensitivities of WT and both mutants. Results of the expression of WT and N580Q hCox-2 in aDrosophilaS2 cell system were also consistent with the N-glycosylation at this site, but low levels of activity were obtained. High levels of N-glycosylation heterogeneity are observed in hCox-2 expressed using recombinant baculovirus (BV) in Sf9 cells. Expression of a double N-glycosylation site mutant in Sf9 cells, N580Q/N592Q, resulted in a decrease in glycosylation but no clear decrease in heterogeneity, indicating that the high degree of N-glycosylation heterogeneity observed with the BV-Sf9 system is not due to partial glycosylation of both Asn580and Asn592. N-linked oligosaccharide profiling of purified VV and BV WT and S582A mutant hCox-2 showed the presence of high mannose structures, (Man)n(GlcNAc)2,n= 9, 8, 7, 6. The S582A mutant was the most homogeneous with (Man)9(GlcNAc)2comprising greater than 50% of oligosaccharides present. Analysis of purified VV WT and S582A mutant hCox-2 by liquid chromatography–electrospray ionization–mass spectrometry showed an envelope of peaks separated by approximately 160 Da, corresponding to differences of a single monosaccharide. The difference between the highest mass peaks of the two envelopes, of approximately 1500 Da, is consistent with the wild-type enzyme containing an additional high mannose oligosaccharide.  相似文献   

10.

Background

Protein C inhibitor (PCI) is a plasma serine protease inhibitor (serpin) that regulates several serine proteases in coagulation including thrombin and activated protein C. However, the physiological role of PCI remains under investigation. The cysteine protease, cathepsin L, has a role in many physiological processes including cardiovascular diseases, blood vessel remodeling, and cancer.

Methods and results

We found that PCI inhibits cathepsin L with an inhibition rate (k2) of 3.0 × 105 M1 s1. Whereas, the PCI P1 mutant (R354A) inhibits cathepsin L at rates similar to wild-type PCI, mutating the P2 residue results in a slight decrease in the rate of inhibition. We then assessed the effect of PCI and cathepsin L on the migration of human breast cancer (MDA-MB-231) cells. Cathepsin L was expressed in both the cell lysates and conditioned media of MDA-MB-231 cells. Wound-induced and transwell migration of MDA-MB-231 cells was inhibited by exogenously administered wtPCI and PCI P1 but not PCI P14 mutant. In addition, migration of MDA-MB-231 cells expressing wtPCI was significantly decreased compared to non-expressing MDA-MB-231 cells or MDA-MB-231 cells expressing the PCI P14 mutant. Downregulation of cathepsin L by either a specific cathepsin L inhibitor or siRNA technology also resulted in a decrease in the migration of MDA-MB-231 cells.

Conclusions

Overall, our data show that PCI regulates tumor cell migration partly by inhibiting cathepsin L.

General significance

Consequently, inhibiting cathepsin L by serpins like PCI may be a new pathway of regulating hemostasis, cardiovascular and metastatic diseases.  相似文献   

11.
Cathepsin K is the major collagenolytic enzyme produced by bone-resorbing osteoclasts. We showed earlier that the unique triple-helical collagen-degrading activity of cathepsin K depends on the formation of complexes with bone-or cartilage-resident glycosaminoglycans, such as chondroitin 4-sulfate (C4-S). Here, we describe the crystal structure of a 1:n complex of cathepsin K:C4-S inhibited by E64 at a resolution of 1.8 Å. The overall structure reveals an unusual “beads-on-a-string”-like organization. Multiple cathepsin K molecules bind specifically to a single cosine curve-shaped strand of C4-S with each cathepsin K molecule interacting with three disaccharide residues of C4-S. One of the more important sets of interactions comes from a single turn of helix close to the N terminus of the proteinase containing a basic amino acid triplet (Arg8-Lys9-Lys10) that forms multiple hydrogen bonds either to the caboxylate or to the 4-sulfate groups of C4-S. Altogether, the binding sites with C4-S are located in the R-domain of cathepsin K and are distant from its active site. This explains why the general proteolytic activity of cathepsin K is not affected by the binding of chondroitin sulfate. Biochemical analyses of cathepsin K and C4-S mixtures support the presence of a 1:n complex in solution; a dissociation constant, Kd, of about 10 nM was determined for the interaction between cathepsin K and C4-S.  相似文献   

12.
The action of three previously isolated electrophoretically homogeneous brain proteinases—cathepsin B (EC 3.4.22.1), cathepsin D (EC 3.4.23.5), and high-molecular-weight aspartic proteinase (Mr=90K; EC 3.4.23.−)—on human angiotensins I and II has been investigated. The products of enzymatic hydrolysis have been identified by thin-layer chromatography on Silufol plates using authentic standards and by N-terminal amino acid residue analysis using a dansyl chloride method. Cathepsin D and high-molecular-weight aspartic proteinase did not split angiotensin I or angiotensin II. Cathepsin B hydrolyzed angiotensin I via a dipeptidyl carboxypeptidase mechanism removing His-Leu to form angiotensin II, and it degraded angiotensin II as an endopeptidase at the Val3-Tyr4 bond. Cathepsin B did not split off His-Leu from Z-Phe-His-Leu. Brain cathepsin B may have a role in the generation and degradation of angiotensin II in physiological conditions. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

13.
l-Arabinose isomerase from Geobacillus stearothermophilus (GSAI; EC 5.3.1.4) has been genetically evolved to increase the reaction rate toward d-galactose, which is not a natural substrate. To change the optimal pH of GSAI for d-galactose isomerization (pH optimum at 8.5), we investigated the single point mutations influencing the activity based on the sequences of the previously evolved enzymes. Among the seven point mutations found in the evolved enzymes, mutations at Val408 and Asn475 were determined to be highly influential mutation points for d-galactose isomerization activity. A random mutation was introduced into sites Val408 and Asn475 (X408V and X475N), and candidates were screened based on non-optimal pH conditions. Among the mutations of X408V and X475N, mutations of Q408V and R408V were selected. The optimal pH of the both mutations Q408V and R408V was shifted to pH 7.5. At the shifted optimal pH, the d-galactose isomerization activities of Q408V and R408V were 60 and 30% higher than that of the wild type at pH 8.5, respectively.  相似文献   

14.
Cathepsin B (EC 3.4.22.1) is a member of the papain family cysteine protease and in mammals is known to be involved in protein degradation and other biological functions. However, very little is known about the function of cathepsin B in fish. In this study, we identified and analyzed a cathepsin B homologue (CsCatB) from tongue sole (Cynoglossus semilaevis, Pleuronectiformes), an economic fish species cultured in China. CsCatB is composed of 322 amino acid residues and shares 70-81.3% overall sequence identities with its counterpart in teleosts and humans. CsCatB possesses typical cathepsin B structural features including the propeptide region and the papain family cysteine protease domain, the latter containing the four catalytic residues (Q101, C107, H277, and N297) that are conserved in lower and higher vertebrates. Quantitative real time RT-PCR analysis showed that CsCatB expression occurred in multiple tissues and was positively regulated by bacterial infection and by immunization with a subunit vaccine. Recombinant CsCatB purified from Escherichia coli exhibited apparent protease activity, which was optimal at 35 °C and pH 5.5. In contrast, a mutant CsCatB bearing glutamic acid substitution at H277 was dramatically reduced in proteolytic activity. These results indicate that CsCatB is a biologically active protease that is likely to be involved in host immune response during bacterial infection and vaccination.  相似文献   

15.
Postnatal Changes in Cathepsin D in Rat Neural Tissue   总被引:1,自引:1,他引:0  
Cathepsin D, an aspartyl endopeptidase, was analyzed in cortex from forebrain and cerebellum, spinal cord, and optic and sciatic nerves, and in the liver of rats from 1 to 120 days of age. Cathepsin D was quantitated in tissue extracts by measurement of enzyme specific activity on a substrate of [methyl-14C]-methylated hemoglobin and by radioimmunoassay. Immunocytochemistry was used to ascertain the identity of the mixed cell types that contributed to the cathepsin D detected. As quantitated by radioimmunoassay, immunoreactive cathepsin D varied between 0.2 and 1 ng/μg of total protein. Maximum activity occurred at approximately the 15th postnatal day; the least amount of immunoreactive cathepsin D was found at 30 or 60 days of age. A subsequent increase of varying magnitude occurred at postnatal day 120. There was good correspondence between immunoreactive enzyme and enzyme specific activity, which ranged from 1 to 4 ng/μg of total protein, and the activities determined by the two methods provided similar, but not identical, developmental profiles. Cathepsin D was demonstrated by immunocytochemistry to be present in most neurons, in all choroid plexus epithelium, and in certain oligodendrocytes from the first postnatal day. Cathepsin D was present in oligodendrocytes in cord lateral funiculi and optic nerve by the first postnatal day, and by the sixth postnatal day many oligodendrocytes were abundantly stained. In contrast, oligodendrocytes in the corpus callosum and in the cerebellar white matter did not contain demonstrable cathepsin D until postnatal days 10 and 15, respectively. These results indicate a role for cathepsin D during the postnatal development of rat CNS and suggest that this proteinase may be involved in the steps of myelination.  相似文献   

16.
In eukaryotes, a rate-limiting step of translation initiation is recognition of the mRNA 5′ m7GpppN cap structure by the eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex consisting of the cap-binding protein, eIF4E, along with eIF4G, and eIF4A. The eIF4E-binding proteins (4E-BPs) repress translation by disrupting eIF4F formation, thereby preventing ribosome recruitment to the mRNA. Of the three 4E-BPs, 4E-BP2 is the predominant paralog expressed in the mammalian brain and plays an important role in synaptic plasticity and learning and memory. 4E-BP2 undergoes asparagine deamidation, solely in the brain, during early postnatal development. Deamidation spontaneously converts asparagines into a mixture of aspartates or isoaspartates, the latter of which may be destabilizing to proteins. The enzyme protein l-isoaspartyl methyltransferase (PIMT) prevents isoaspartate accumulation by catalyzing the conversion of isoaspartates to aspartates. PIMT exhibits high activity in the brain, relative to other tissues. We report here that 4E-BP2 is a substrate for PIMT. In vitro deamidated 4E-BP2 accrues isoapartyl residues and is methylated by recombinant PIMT. Using an antibody that recognizes 4E-BP2, which harbors isoaspartates at the deamidation sites, Asn99 and Asn102, we demonstrate that 4E-BP2 in PIMT−/− brain lysates contains isoaspartate residues. Further, we show that 4E-BP2 containing isoaspartates lacks the augmented association with raptor that is a feature of deamidated 4E-BP2.  相似文献   

17.
Asn331 in transmembrane segment 7 of the yeast Saccharomyces cerevisiae transporter Hxt2 has been identified as a single key residue for high-affinity glucose transport by comprehensive chimera approach. The glucose transporter GLUT1 of mammals belongs to the same major facilitator superfamily as Hxt2 and may therefore show a similar mechanism of substrate recognition. The functional role of Ile287 in human GLUT1, which corresponds to Asn331 in Hxt2, was studied by its replacement with each of the other 19 amino acids. The mutant transporters were individually expressed in a recently developed yeast expression system for GLUT1. Replacement of Ile287 generated transporters with various affinities for glucose that correlated well with those of the corresponding mutants of the yeast transporter. Residues exhibiting high affinity for glucose were medium-sized, non-aromatic, uncharged and irrelevant to hydrogen-bond capability, suggesting an important role of van der Waals interaction. Sensitivity to phloretin, a specific inhibitor for the presumed exofacial glucose binding site, was decreased in two mutants, whereas that to cytochalasin B, a specific inhibitor for the presumed endofacial glucose binding site, was unchanged in the mutants. These results suggest that Ile287 is a key residue for maintaining high glucose affinity in GLUT1 as revealed in Hxt2 and is located at or near the exofacial glucose binding site.  相似文献   

18.
19.
20.
Cathepsin D activity was estimated in midgut homogenates from Rhodnius prolixus, uninfected and experimentally infected with Trypanosoma cruzi, at different times after blood ingestion. No enzyme activity was found in the anterior midgut and rectum. In the posterior midgut, enzyme activity was found both in lumen and wall. In starved uninfected insects, in lumen and wall, cathepsin D activity was high, decreasing to a constant rate at 1-15 days after feeding. In insects infected with T. cruzi cathepsin D activity increased 1 and 3 days after blood meal. We suggest that these changes in cathepsin D activity in R. prolixus posterior midgut are due to the establishment of T. cruzi infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号