首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Yu  Gui-Rui  Miwa  Takuji  Nakayama  Keiichi  Matsuoka  Nobuhiro  Kon  Hisashi 《Plant and Soil》2000,227(1-2):47-58
The present study deals with the relationships between water status parameters of plant leaves and reflectances (Rλ) at characteristic wavelengths, between 522 and 2450 nm, as well as reflectance ratios, Rλ/R1430, Rλ/R1650, Rλ/R1850, Rλ/R1920, and Rλ/R1950, based on the air-drying experimental results of soybean (Glycine max Merr.), maize (Zea mays L.), tuliptree (Liriodendron tulipifera L.) and viburnum (Viburnum awabuki K. Koch.) plants. The water status parameters include leaf water content per unit leaf area (LWC), specific leaf water content (SWC), leaf moisture percentage of fresh weight (LMP), relative leaf water content (RWC) and relative leaf moisture percentage on fresh weight basis (RMP). Effective spectral reflectances and reflectance ratios for estimating the LWC, SWC, LMP, RWC and RMP were identified. With these spectral indices, approaches to estimating LWC, RWC and RMP were discussed. Eventually, an attempt on universal formulas was made for estimating the leaf moisture conditions of both herbaceous and woody plants as mentioned above. Moreover, applicability of these formulas was checked with the field experimental results of soybean and maize grown under water and nutrient stresses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

3.
干旱胁迫下雷竹叶片叶绿素的高光谱响应特征及含量估算   总被引:1,自引:0,他引:1  
张玮  王鑫梅  潘庆梅  谢锦忠  张劲松  孟平 《生态学报》2018,38(18):6677-6684
植物叶片的反射光谱特征与叶绿素含量密切相关。以重要的笋用竹种雷竹(Phyllostachys violascens)为研究对象,采用盆栽及控水试验方法研究了2年生雷竹在干旱胁迫条件下冠层叶片反射光谱的响应特征,分析了叶片叶绿素含量与不同波段光谱反射率一阶微分值以及光谱特征参数之间的相关关系,并以雷竹叶绿素含量敏感波段及构建的植被指数与叶绿素含量进行了拟合。结果表明,重度缺水处理后雷竹叶片叶绿素含量显著降低,在可见光区叶片光谱反射率随叶绿素含量的降低而增加,以波长493、639、693、756 nm等处的光谱反射率一阶微分值与叶绿素含量的相关性较高。雷竹叶片叶绿素含量与光谱特征参数如绿峰反射率、红谷反射率、蓝边面积、绿峰面积之间的相关性较高。与已有的植被指数相比基于雷竹叶绿素含量敏感波段修正后的植被指数与叶绿素含量相关性优于原植被指数。基于反射率一阶微分值构建的多元回归方程以及修正的绿色归一化植被指数(m GNDVI)构建的回归方程拟合效果较好,为雷竹叶绿素含量的较优估算方程。研究结果可以为雷竹叶绿素含量的快速无损测定以及季节性干旱条件下雷竹林的科学经营及灾后评估提供依据。  相似文献   

4.
冠层吸收光合有效辐射比(fAPAR)是植被生产力遥感模型的重要参数.但关于不同干旱条件下作物全生育期的fAPAR遥感反演研究仍未见报道.本研究利用2015年夏玉米5个灌水处理模拟试验的高光谱反射率和fAPAR观测资料,分析了不同干旱条件下夏玉米关键生育期fAPAR和高光谱反射率变化特征,探讨了fAPAR与反射率、一阶导数光谱反射率和植被指数的关系.结果表明: 轻度水分胁迫和充分供水条件下,fAPAR较高;重度水分胁迫和重度持续干旱条件下,fAPAR较低.冠层可见光、近红外光和短波红外光区的反射率与fAPAR分别呈负相关、正相关和负相关关系.fAPAR与可见光和短波红外光区的383、680和1980 nm附近的反射率的相关性最强,相关系数均达-0.87.一阶导数光谱反射率与fAPAR相关性强且稳定的波段为580、720和1546 nm,相关系数分别为-0.91、0.89和0.88. 9个常用植被指数与fAPAR呈线性或对数关系,其中,增强型植被指数、复归一化植被指数、土壤调节植被指数和修正的土壤调节植被指数与fAPAR的关系模型最好,决定系数(R2)均在0.88以上,平均相对误差分别为16.6%、16.6%、16.7%和16.2%;基于一阶导数光谱反射率与fAPAR的对数关系在(720±5) nm波段处的模拟效果较好,R2达0.86;直接选择反射率数据估算fAPAR的效果较差,R2最高为0.81.研究结果可为fAPAR的准确反演及评估作物干旱状况提供支撑.  相似文献   

5.
The aim of this work was to assess the effect of leaf thickness, leaf succulence (LS), specific leaf area (SLA), specific leaf mass (Ws) and leaf water content (LWC) on chlorophyll (Chl) meter values in six Amazonian tree species (Carapa guianensis, Ceiba pentandra, Cynometra spruceana, Pithecolobium inaequale, Scleronema micranthum and Swietenia macrophylla). We also tested the accuracy of a general calibration equation to convert Minolta Chl meter (SPAD-502) readings into absolute Chl content. On average, SPAD values (x) increased with fresh leaf thickness (FLT [μm] = 153.9 + 0.98 x, r 2 = 0.06**), dry leaf thickness (DLT [μm] = 49.50 + 1.28 x, r 2 = 0.16**), specific leaf mass (Ws [g (DM) m−2] = 6.73 + 1.31 x, r 2 = 0.43**), and leaf succulence (LS [g(FM)] m−2 = 94.2 + 1.58 x, r 2 = 0.19**). However, a negative relationship was found between SPAD values and either specific leaf area [SLA (m2 kg−1) = 35.1 − 0.37 x, r 2 = 0.38**] or the leaf water content (LWC [%]= 80.0 − 0.42 x, r 2 = 0.58**). Leaf Chl contents predicted by the general calibration equation significantly differed (p<0.01) from those estimated by species-specific calibration equations. We conclude that to improve the accuracy of the SPAD-502 leaf thickness and LWC should be taken into account when calibration equations are to be obtained to convert SPAD values into absolute Chl content.  相似文献   

6.
Sugar beet cv. Rizor was grown for five growing seasons (2002–2006) in field conditions in Thessaly, central Greece. A total of 55 samplings took place during the growing seasons and allometric growth of the leaves was monitored. Highly significant (p<0.001) quadratic relationships were found between individual leaf mass (LM), individual leaf area (LA), aboveground dry biomass (ADB), and leaf area index (LAI). Only the LM-LA relationship (LA = 43.444 LM2 − 10.693 LM + 118.34) showed a relatively high r 2 (0.63) and thus could be used for prediction of LA. Specific leaf area (SLA) was significantly related with leaf water content (LWC) (SLA = 26 279 LWC2 − 44 498 LWC + 18 951, r 2 = 0.91, p<0.001) and thus LWC could be a good indirect predictor of SLA in this cultivar.  相似文献   

7.
Pigment combinations are regulated during leaf ontogenesis. To better understand pigment function, alterations in chlorophyll, carotenoid and anthocyanin concentrations were investigated during different leaf development stages in six subtropical landscape plants, namely Ixora chinensis Lam, Camellia japonica Linn, Eugenia oleina Wight, Mangifera indica L., Osmanthus fragrans Lowr and Saraca dives Pierre. High concentrations of anthocyanin were associated with reduced chlorophyll in juvenile leaves. As leaves developed, the photosynthetic pigments (chlorophyll and carotenoid) of all six species increased while anthocyanin concentration declined. Chlorophyll fluorescence imaging of ΦPSII (effective quantum yield of PSII) and of NPQ (non-photochemical fluorescence quenching) and determination of electron transport rate-rapid light curve (RLC) showed that maximum ETR (leaf electron transport rate), ΦPSII and the saturation point in RLC increased during leaf development but declined as they aged. Juvenile leaves displayed higher values of NPQ and Car/Chl ratios than leaves at other developmental stages. Leaf reflectance spectra (400–800 nm) were measured to provide an in vivo non-destructive assessment of pigments in leaves during ontogenesis. Four reflectance indices, related to pigment characters, were compared with data obtained quantitatively from biochemical analysis. The results showed that the ARI (anthocyanin reflectance index) was linearly correlated to anthocyanin concentration in juvenile leaves, while a positive correlation of Chl NDI (chlorophyll normalized difference vegetation index) to chlorophyll a concentration was species dependent. Photosynthetic reflectance index was not closely related to Car/Chl ratio, while a structural-independent pigment index was not greatly altered by leaf development or species. Accordingly, it is suggested that the high concentration of anthocyanin, higher NPQ and Car/Chl ratio in juvenile leaves are important functional responses to cope with high radiation when the photosynthetic apparatus is not fully developed. Another two leaf reflectance indices, ARI and Chl NDI, are valuable for in vivo pigment evaluation during leaf development.  相似文献   

8.
Photosynthesis, chlorophyll fluorescence, and hyperspectral reflectance were used to evaluate diurnal changes of Elaeagnus umbellata to quantify physiological responses of the invasive species during times of stress. Field measurements showed that E. umbellata is able to maintain higher levels of photosynthesis relative to nearby Quercus alba plants, with less water loss. Plants subjected to progressive drought were able to recover photosynthesis one day following re-watering. Laboratory and field measurements revealed decreasing ΔF/Fm values in response to drought stress, with little corresponding decrease in photochemical reflectance index values. This research supports the view that xanthophyll cycle dissipation is not the photoprotective mechanism at work for Elaeagnus species under water stress. Elaeagnus umbellata maintains photosynthetic carbon assimilation even under drought conditions, in part, due to chemical dissipation of excess light, and in part because of morphological features that limit excess radiation while maximizing photosynthetic carbon gain. These characteristics may contribute to the invasive success of E. umbellata.  相似文献   

9.
The objective of this study was to use nondestructive measurements as the precise irrigation indices for potted star cluster (Pentas lanceolata). Drought stress was imposed on plants for 0, 3, 5, 7, 12, and 16 d by withholding water. Measurements were conducted on the third leaf counted from the apex (upper leaves) and on the third leaf from the bottom (lower leaves). Within the range of soil water content (SWC) from 10 to 45%, leaf water potential (WP), SWC, and soil matric potential (SMP), chlorophyll fluorescence, photochemical reflectance index (PRI), adjusted normalized difference vegetation index (aNDVI), and the reflectance (R) at 1950 nm (R1950) were measured. The plants reached the temporary wilting point at ?3.87 MPa of leaf WP; the maximal fluorescence yield of the light-adapted state (Fm′) ratio of upper-to-lower leaves was 1.7. When the Fm′ ratio was 1.3, it corresponded to lower-leaf WP < ?2.27 MPa, SWC < 21%, SMP < ?20 kPa, PRI < 0.0443, aNDVI < 0.0301, and R1950 > 8.904; it was the time to irrigate. In conclusion, the Fm′ ratio of upper-to-lower leaves was shown to be a nondestructive predictor of leaf WP and can be used to estimate irrigation timing.  相似文献   

10.
Chlorophyll fluorescence and landscape-level reflectance imagery were used to evaluate spatial variations in stress in Myrica cerifera and Iva frutescens during a severe drought and compared to an extremely wet year. Measurements of relative water content and the water band index (WBI970) indicated that the water stress did not vary across the island. In contrast, there were significant differences in tissue chlorides across sites for both species. Using the physiological reflectance index (PRI), we were able to detect salinity stress across the landscape. For M. cerifera, PRI did not differ between wet and dry years, while for I. frutescens, there were differences in PRI during the 2 years, possibly related to flooding during the wet year. There was a positive relationship between PRI and for M. cerifera (r 2 = 0.79) and I. frutescens (r 2 = 0.72). The normalized difference vegetation index (NDVI), the chlorophyll index (CI), and WBI970 were higher during the wet summer for M. cerifera, but varied little across the island. CI and WBI970 were higher during 2004 for I. frutescens, while there were no differences in NDVI during the 2 years. PRI was not significantly related to NDVI, suggesting that the indices are spatially independent. These results suggest that PRI may be used for early identification of salt stress that may lead to changes in plant distributions at the landscape level, as a result of rising sea level. Comparsions between the two species indicate that variations in PRI and other indices may be species specific.  相似文献   

11.
This study examined the ability of the photochemical reflectance index (PRI) to track changes in effective quantum yield (Δ F/F m ′), non-photochemical quenching (NPQ), and the xanthophyll cycle de-epoxidation (DPS) in an experimental mangrove canopy. PRI was correlated with (Δ F/F m ′) and NPQ over the 4-week measurement period and over the diurnal cycle. The normalised difference vegetation index (NDVI) was not correlated with any aspect of photochemical efficiency measured using chlorophyll fluorescence or xanthophyll pigments. This study demonstrated that photochemical adjustments were responsible for controlling the flow of energy through the photosynthetic apparatus in this mangrove forest canopy rather than canopy structural or chlorophyll adjustments.  相似文献   

12.
The effect of water deficit on chlorophyll fluorescence, sugar content, and growth parameters of strawberry (Fragaria×ananassa Duch. cv. Elsanta) was studied. Drought stress caused significant reductions in leaf water potential, fresh and dry masses, leaf area, and leaf number. A gradual reduction of photochemical quenching (qP) and quantum efficiency (ΦPS2) was observed under drought stress while non-photochemical quenching (qN) increased. Maximum efficiency of photosystem 2 (Fv/Fm) was not affected by drought stress.  相似文献   

13.
The ability to recover from drought stress after re‐watering is an important feature that will enable plants to cope with the predicted increase in episodic drought. The effects of pre‐drought and re‐watering conditions on leaf spectral properties and their relationships with the biochemical processes that underlie the recovery from pre‐drought conditions should be better understood. The reflectance spectra, 10 spectral reflectance indices (SRIs) and biochemical characteristics of maize (Zea mays) leaves were monitored 7, 14, 21 and 28 days after the initiation of soil drought stress during two successive cycles of drought and re‐watering periods. The leaf reflectance of the two inbred maize lines increased under the drought stress, especially in the visible spectral range. In addition, an obvious recovery of the leaf reflectance was only observed in the first re‐watering period, and its value remained higher than that of the control plants during the second recovery period. A recovery lag in the pigment contents was also observed during the second cycle. The recovery variations in the pattern and magnitude of the SRIs and the total contents of C, N and P that were measured in response to the re‐watering during both cycles were diverse and complex; both full and partial recoveries were observed. The SRIs representing different physiological attributes of plant growth, including the water index, red edge position, photochemical reflectance index and near‐infrared reflectance at 800 nm, showed strong linear relationships (P < 0.01 or 0.05) with the growth and biochemical traits across the successive drought and re‐watering cycles. The results suggest that maize plants can adjust their leaf reflectance properties and employ growth and biochemical strategies to adapt to cyclic drought stress and recover from drought stress after re‐watering.  相似文献   

14.
The efficiency of vegetation indices (VIs) to estimate the above-ground biomass of the seagrass species Zostera noltii Hornem. from remote sensing was tested experimentally on different substrata, since terrestrial vegetation studies have shown that VIs can be adversely influenced by the spectral properties of soils and background surfaces. Leaves placed on medium sand, fine sand and autoclaved fine sand were incrementally removed, and the spectral reflectance was measured in the 400–900 nm wavelength range. Several VIs were evaluated: ratios using visible and near infrared wavelengths, narrow-band indices, indices based on derivative analysis and continuum removal. Background spectral reflectance was clearly visible in the leaf reflectance spectra, showing marked brightness and spectral contrast variations for the same amount of vegetation. Paradoxically, indices used to minimize soil effects, such as the Soil-Adjusted Vegetation Index (SAVI) and the Modified second Soil-Adjusted Vegetation Index (MSAVI2) showed a high sensitivity to background effects. Similar results were found for the widely used Normalized Difference Vegetation Index (NDVI) and for Pigment Specific Simple Ratios (PSSRs). In fact, background effects were most reduced for VIs integrating a blue band correction, namely the modified specific ratio (mSR(705)), the modified Normalized Difference (mND(705)), and two modified NDVIs proposed in this study. However, these indices showed a faster saturation for high seagrass biomass. The background effects were also substantially reduced using Modified Gaussian Model indices at 620 and 675 nm. The blue band corrected VIs should now be tested for air-borne or satellite remote sensing applications, but some require sensors with a hyperspectral resolution. Nevertheless, this type of index can be applied to analyse broad band multispectral satellite images with a blue band.  相似文献   

15.
Measurements of chlorophyll fluorescence and hyperspectral reflectance were used to detect salinity stress in Suaeda salsa L., beach of Dongtai, Jiangsu Province, China. Three experimental sites were used in our study, which belong to low salinity, middle salinity and high salinity. The results showed that leaf chlorophyll fluorescence changed along salinity gradient. To select the sensitive hyperspectral ranges of leaf chlorophyll fluorescence, the correlationship between leaf chlorophyll fluorescence and hyperspectral reflectance was regressed and analyzed. Statistical results indicated that the 680 and 935 nm were the most sensitive hyperspectral bands for estimating leaf chlorophyll fluorescence. Then, 11 relative hyperspectral indices were selected based on the sensitive bands and previous literature. (R 680 − R 935)/(R 680 + R 935) and R 680/R 935 have higher correlationship coefficient (R) and lower root mean square error, may be used for detecting chlorophyll fluorescence, such as F o, F m, F v/F m, qP, and ΦPSII, while NPQ may be detected by (R 780 − R 710)/(R 780 − R 680). These results suggest that chlorophyll fluorescence of halophyte response to salinity stress could be identified by remote sensing.  相似文献   

16.
Brachypodium distachyon (Brachypodium) is a temperate wild grass species and is a powerful model system for studying grain, energy, forage and turf grasses. Exploring the natural variation in the drought response of Brachypodium provides an important basis for dissecting the genetic network of drought tolerance. Two experiments were conducted in a greenhouse to assess the drought tolerance of 57 natural populations of Brachypodium. Principle component analysis revealed that reductions in chlorophyll fluorescence (Fv/Fm) and leaf water content (LWC) under drought stress explained most of the phenotypic variation, which was used to classify the tolerant and susceptible accessions. Four groups of accessions differing in drought tolerance were identified, with 3 tolerant, 16 moderately tolerant, 32 susceptible and 6 most susceptible accessions. The tolerant group had little leaf wilting and fewer reductions in Fv/Fm and LWC, while the most susceptible groups showed severe leaf wilting and more reductions in Fv/Fm and LWC. Drought stress increased total water soluble sugar (WSS) concentration, but no differences in the increased WSS were found among different groups of accessions. The large phenotypic variation of Brachypodium in response to drought stress can be used to identify genes and alleles important for the complex trait of drought tolerance.  相似文献   

17.
以导入大肠杆菌过氧化氢酶基因KatE的T3代转基因棉花为供试材料,经卡那霉素检测和PCR鉴定,将筛选出的阳性转基因植株与对照棉花进行整个生育期的持续水分胁迫处理直至收获,比较材料间的生理生化指标的差异,鉴定转基因植株的耐旱能力。结果显示:(1)干旱胁迫持续至初蕾期时,转基因棉花与对照植株间各项抗旱生理指标差异均未达到显著水平。(2)水分胁迫持续至盛蕾和盛花期时,转基因棉花叶片相对含水量、光系统Ⅱ最大光化学效率(Fv/Fm)、CAT活性,以及叶片的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著或极显著高于对照植株,叶绿素含量也都明显高于对照植株。干旱胁迫持续至吐絮期时,转基因棉花的株高、果枝数和铃数均显著或极显著高于对照植株,且转基因棉花和对照的籽棉产量分别比正常灌溉处理降低57.5%和60.1%,全生育期的水分胁迫严重影响了棉花籽棉产量,但转基因棉花的籽棉产量仍显著高于对照。研究表明,在新疆石河子当地自然降水(干旱胁迫)条件下,转KatE基因棉花表现出了较好的生理和生长优势,KatE基因有助于提高棉花的抗旱性。  相似文献   

18.
苗期玉米叶片碳氮平衡与干旱诱导的叶片衰老之关系   总被引:1,自引:0,他引:1  
为了探究干旱诱导的碳氮平衡破坏与干旱诱导的叶片衰老之间的关系,该实验以8个在干旱胁迫下叶片衰老进程有明显差异的玉米品种为实验材料,采用PEG模拟干旱处理,通过测定光合速率、叶绿素含量和叶绿素荧光参数等叶片衰老指标以及非结构性碳水化合物(可溶性糖、淀粉)和全氮含量等变化,分析玉米中干旱诱导的叶片衰老与叶片中碳氮平衡(碳氮比)之间的关系。结果显示:(1)干旱胁迫下,8个玉米品种叶片净光合速率受到严重抑制,Fv/Fm大幅下降,叶绿素含量显著降低,说明干旱诱导了玉米叶片的衰老;(2)干旱诱导玉米叶片衰老的同时,8个玉米品种的叶片中可溶性糖含量显著升高,淀粉含量小幅上升,全氮含量大幅降低,碳氮比显著升高,碳氮平衡遭到了破坏;(3)8个玉米品种叶片的叶绿素含量与非结构性碳水化合物含量以及碳氮比呈极显著负相关关系,与全氮含量呈极显著正相关关系。因此,碳氮代谢与干旱诱导的叶片衰老紧密联系,碳氮平衡可能参与了干旱诱导的叶片衰老调控。  相似文献   

19.
Drought stress is one of the most important factors in limiting the survival and growth of plants in the harsh karst habitats of southwestern China, especially at the seedling establishment stage. The ecophysiological response to drought stress of native plants with different growth forms is useful for re-vegetation programs. Two shrub and four tree species were studied, including Pyracantha fortuneana (evergreen shrub), Rosa cymosa (deciduous shrub), Cinnamomum bodinieri (evergreen tree), and other three deciduous trees, Broussonetia papyrifera, Platycarya longipes, and Pteroceltis tatarinowii. The seedlings were randomly assigned to four drought treatments, i.e., well-watered, mild drought stress, moderate drought stress, and severe drought stress. Leaf water relations, gas exchange, chlorophyll fluorescence, and growth of the seedlings were investigated. Under severe drought stress, the two shrubs with low leaf area ratio (LAR) maintained higher water status, higher photosynthetic capacity, and larger percent biomass increase than the most of the trees. The two shrubs also had lower specific leaf area, greater intrinsic water use efficiency, and thermal dissipation than the trees. This suggested that the two shrubs had high tolerance to severe drought and were suitable for re-vegetation in harsh habitats. The evergreen C. bodinieri exhibited higher leaf mass ratio (LMR) and LAR than the deciduous species under mild and moderate stress. However, the low maximum quantum efficiency of PSII photochemistry (F v/F m) and net assimilation rate, and the sharp decreases of water potential, LMR, LAR, and biomass under severe stress indicated C. bodinieri’s weak tolerance to severe drought. In response to drought stress, the three deciduous trees revealed sharp reductions of biomass due to the large drought-induced decreases of gas exchange, LAR, and LMR. Under drought conditions, the deciduous trees minimized water loss by stomatal closure and by reducing transpiration leaf area and light harvesting through shedding leaves. This suggested that the three deciduous trees were more sensitive to water availability than the shrubs and used avoidance strategies against drought stress. However, the better growth performance of the deciduous trees than that of the shrubs under favorable conditions suggested that deciduous trees could be suitable for habitats with mild and temporary drought stress.  相似文献   

20.
Rehmannia glutinosa seedlings were pretreated with choline chloride (CC) in concentrations of 0, 0.7, 2.1 and 3.5 mM, and then subjected to drought and rewatering treatment to study the effects of CC on the generation of reactive oxygen species (O2, H2O2), lipid peroxidation, proline accumulation, water status and photosynthesis. The results showed that pretreatment with CC alleviated the inhibition of SOD and APX activity caused by drought stress, and therefore, the rate of O2 production and H2O2 concentration were reduced and lipid peroxidation decreased in pretreated plants. CC pretreatment also accelerated accumulation of proline, maintained higher Ψw and RWC, deferred leaf water loss during drought stress and retarded the drop in proline concentration after rewatering. Consequently, drought-induced decreases in Fm/F0, Fv/Fm, ΦPS2, qP, and A and increase in qNP were inhibited and the recovery of photosynthesis after rewatering was quicker in pretreated plants. Although differences in Fv/Fm, ΦPS2 and qP between treatments were not significant, there was a general trend that the effects of CC increased with the rise of its concentrations. The data suggested that 2.1 mM of CC be suitable for alleviating lipid peroxidation, promoting proline accumulation, retarding leaf water loss and improving photosynthesis of R. glutinosa seedlings under drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号