首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
To test the hypotheses that butterflies in an intact lowland rainforest are randomly distributed in space and time, a guild of nymphalid butterflies was sampled at monthly intervals for one year by trapping 883 individuals of 91 species in the canopy and understory of four contiguous, intact forest plots and one naturally occurring lake edge. The overall species abundance distribution was well described by a log-normal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (l-β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness were lower in the canopy man in the understory, but rarefaction analysis suggested that the underlying species richness was similar in both canopy and understory. Observed species richness varied among four contiguous forest plots, and was lowest in the lake edge plot. Rarefaction and species accumulation curves showed that one forest plot and the lake edge had significantly lower species richness than other forest plots. Within any given month, only a small fraction of total sample species richness was represented by a single plot and height (canopy or understory). Comparison of this study to a similar one done in disturbed forest showed diat butterfly diversity at a naturally occurring lake edge differed strongly from a pasture-forest edge. Further comparison showed that species abundance distributions from intact and disturbed forest areas had variances that differed significandy, suggesting mat in addition to extrapolation, rarefaction and species accumulation techniques, the shapes of species abundance distributions are fundamental to assessing diversity among sites. This study shows the necessity for long-term sampling of diverse communities in space and time to assess tropical insect diversity among different areas, and the need of such studies is discussed in relation to tropical ecology and quick surveys in conservation biology.  相似文献   

2.
We studied the vertical distribution of Lepidoptera from a canopy walkway within a dipterocarp rain forest at Kinabalu Park (Borneo) using three different methods: (1) Bait traps to survey fruit-feeding nymphalid butterflies, (2) standardized counts for predominantly flower-visiting butterflies and their potential predators, aerial-hawking birds, and (3) attraction by blacklight for hawk- and tiger moths. There was a distinct decrease in the abundance of fruit-feeding nymphalids towards the canopy, probably due to a reduced and less predictable availability of rotting fruits in higher strata. These constraints might also be responsible for a higher abundance variation in the canopy, and a significant shift in size from larger species in the understorey to smaller ones in the canopy. Changes of microclimate and the conspicuous increase of insectivorous aerial-hawking birds from ground to canopy layer may be responsible for the prominent change in species composition of fruit-feeding nymphalids between 20 and 30 m. Nectar-feeding Lepidoptera showed a reversed abundance pattern. One main factor contributing to the much higher abundance of flower-visiting butterflies and moth taxa in the canopy, such as Sphingidae and some Arctiinae, might be the increase of nectar resources available in upper vegetation layers. A distinctly higher diversity in hawkmoths was also found in the canopy. A higher abundance of insectivorous aerial-hawking birds in the canopy might contribute to the shift in body design of fruit-feeding nymphalids from more slender bodies at lower vegetation layers to stouter ones (i.e. species which are stronger on the wing) in the canopy. Larval resources could play an additional role in specialisation on but a small part of the vertical gradient. This may explain stratification pattern of the nymphalid subfamilies Morphinae and Satyrinae. Monocotyledoneous larval food plants of both taxa, whose flight activity is largely restricted to the understorey, occur mostly in lower vegetation layers. Our observations on a wide taxonomic and ecological range of butterflies and moths indicate that tropical forest canopies hold a distinct and unique Lepidoptera fauna, whose species richness and abundance patterns differ from lower strata. However, the notion of tropical forest canopies as peaks of terrestrial diversity does not hold uniformly for all taxa or guilds.  相似文献   

3.
Concomitant with the rapid loss of tropical mature forests, the relative abundance of secondary forests is increasing steadily and the latter are therefore of growing interest for conservation. We analysed species richness of fruit-feeding nymphalid butterflies in secondary forest fragments of different age and isolation and in mature forest at the eastern margin of the Lore Lindu National Park in Central Sulawesi, Indonesia. From April to August 2001 we collected 2322 individuals of fruit-feeding butterflies, belonging to 33 species. Butterfly species richness increased with succession, but was significantly higher in mature forests than in all types of secondary forest. Isolation of the forest fragments did not have a significant effect on butterfly species richness in the range of distances (up to 1700 m) studied. Rather it appeared to affect only a few species. Species richness of endemic species was higher than of non-endemic species. Although endemic species were most diverse in mature forests, many species captured were restricted to secondary forests. Our results show that mature forest is essential for the conservation of nymphalid butterflies and for the endemic species in this area. However, considering the relatively large number of species found in these rather small habitat islands, secondary forest fragments, especially older successional stages, can be taken into account in conservation efforts and thus contribute to the preservation of tropical biodiversity on a landscape scale.  相似文献   

4.
1. Documenting species abundance distributions in natural environments is critical to ecology and conservation biology. Tropical forest insect faunas vary in space and time, and these partitions can differ in their contribution to overall species diversity. 2. In the Neotropics, the Central American butterfly fauna is best known in terms of general natural history, but butterfly community diversity is best documented by studies on South American fruit-feeding butterflies. Here, we present the first long-term study of fruit-feeding nymphalid species diversity from Central America and provide a unique comparison between Central and South American butterfly communities. 3. This study used 60 months of sampling among multiple spatial and temporal partitions to assess species diversity in a Costa Rican rainforest butterfly community. Abundance distributions varied significantly at the species and higher taxonomic group levels, and canopy and understorey samples were found to be composed of distinct species assemblages. 4. Strong similarities in patterns of species diversity were found between this study and one from Ecuador; yet, there was an important difference in how species richness was distributed in vertical space. In contrast to the Ecuadorian site, Costa Rica had significantly higher canopy richness and lower understorey richness. 5. This study affirms that long-term sampling is vital to understanding tropical insect species abundance distributions and points to potential differences in vertical structure among Central and South American forest insect communities that need to be explored.  相似文献   

5.
To test whether ithomiine butterfly species within Miillerian mimetic classes are associated in space and time, we sampled a community of ithomiine butterflies at monthly intervals with traps in the canopy and the understory of four forest habitats: primary, higrade, secondary and edge. A species accumulation curve reached an asymptote at 22 species, suggesting that these species have a greater preference for feeding on fruit juices than other ithomiines known to occur at the study site. Species richness and individual abundance showed marked temporal variation, and there were slight differences in the distribution of species richness and individual abundance among the four habitats. The 22 species sampled in this study were not stratified vertically. The five mimetic colour classes of these butterflies were unequally distributed among the four habitats and over the course of the twelve months. There is suggestive evidence that co-mimic species occurred in the same habitats, and strong evidence that they occurred at the same times. Habitat and temporal effects each contributed approximately 10% to the total mimetic class diversity, with the temporal effect being slightly larger than that of habitat. This study demonstrates that Müllerian co-mimic associations can be measured on a much smaller scale than has been done previously.  相似文献   

6.
Quick surveys are often used by conservation biologists to assess biodiversity. In tropical forests, fruit-feeding butterflies are a convenient indicator group because they can be readily trapped and are comparatively easy to identify. However, studies carried out in Costa Rica and Ecuador have revealed that long-term sampling is needed to estimate biodiversity accurately. Furthermore, almost half of the biodiversity of fruit-feeding butterflies in the neotropics was found to be in the canopy. Short term sampling in the understory can, therefore, lead to inaccurate estimates of species richness and worse, to poorly informed conservation decisions. Comparable to the studies in South America, we performed a long-term trapping study of the same guild of butterflies in the understory and canopy of Kibale Forest in Uganda, to describe temporal and vertical patterns of biodiversity. We caught 32,308 individuals of 94 species over three years. About 14% of these species could be categorized as canopy specialists and 68% as understory specialists. Temporal variation was extensive and did not follow a clear seasonal pattern. This is the first study in an African forest with continuous sampling of fruit-feeding butterflies over multiple years and in both canopy and understory.  相似文献   

7.
The vertical stratification of lepidopteran and coleopteran communities in a cool-temperate deciduous forest in Japan was examined to evaluate the hypothesis of an expected uniform distribution of mobile flying insects between the canopy and understory of temperate forests. Lepidopteran and coleopteran insects were trapped using light traps at three sites in each of the canopy and understory for three consecutive nights each month from April to October 2001. For Lepidoptera, species richness, abundance, and family richness were significantly higher in the understory than in the canopy. For Coleoptera, only abundance was larger in the canopy relative to the understory; species and family richness did not differ between the strata. The beta diversity of the lepidopteran community was larger between the strata than among sites, but the coleopteran community showed an inverse pattern. These results imply the presence of vertical stratification within the lepidopteran community, but not within the coleopteran community, in the temperate forest. The understory contributes more than the canopy to lepidopteran diversity in the temperate forest, although this stratification may be relatively weak because, in contrast to the situation in tropical forests, the canopy and understory assemblages share many species.  相似文献   

8.
This study evaluated how the edge effect influences the structuration of fruit-feeding butterfly assemblages in swamp forest fragments of the subtropical Atlantic Forest, Southern Brazil. Sampling was carried out twice in 10 fragments using baited traps placed in sampling units both at the forest edge and 50 m within the forest interior, with the habitats being defined by a set of environmental variables. Richness and abundance were higher for edge habitats with an effect of temperature depending on humidity and luminosity. The subfamily/tribe composition of fruit-feeding butterflies was segregated between edge and interior and was predicted by wind speed and the interaction between humidity and luminosity. Fifty meters within the forest interior is not sufficient to cause homogenization of butterfly composition between the edge and interior of swamp forest fragments, indicating distinct assemblages in each habitat. The interior harboured forest-loving butterfly groups while the edge harboured generalist sun-loving and common butterflies associated with disturbed areas, suggesting resistance to the effects of habitat fragmentation. We highlight the importance of using fruit-feeding butterfly groups, instead of species, to evaluate edge effects. We also suggest that a heterogeneous matrix with native habitats and distinct semi-natural land-use systems be maintained to manage subtropical areas by increasing connectivity within the landscape. Considering the impacts that the Atlantic Forest suffers, increased knowledge of modifications caused at small and regional scales is crucial for the maintenance of ecological processes and represents a tool for conservation planning and environmental agendas.  相似文献   

9.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

10.
Arthropod assemblages were examined in Lama forest reserve, a protected area situated in the Dahomey gap, southern Benin, composed of plantations, degraded forest and remnants of natural forest. The objectives were to compare assemblages in relation to forest type and use, to elucidate the value of forest plantations for biodiversity conservation and to identify indicator species for specific forest habitats. Arthropods were collected over an 11-month period, using standardized sets of traps (pitfall, emergence, Malaise and flight intercept traps). Nine different habitats were studied, including natural and degraded forest, forest plantations (Tectona grandis and Senna siamea) of different age, and isolated forest fragments. Our analysis focused on detritivorous and xylophagous arthropods but also included ground beetles and heteropterans, totalling 393 species. We found no differences in species richness among natural and degraded forest habitats in the centre of the reserve (Noyau central). Outside of the Noyau central, species richness was highest in old teak plantations and isolated forest fragments and lowest in young teak and fuelwood plantations. Detrended correspondence analysis (DCA) separated three main groups: (1) natural forest, (2) degraded forest and young plantations, and (3) old plantations and isolated forest fragments. Multiple regression of DCA scores of the first two axes on environmental variables identified one natural and three disturbance-related predictors of arthropod assemblages in Lama forest: soil type (texture), canopy height, naturalness (proportion of Guineo-Congolian plant species) and understorey vegetation cover. We identified 15 indicator species for six different forest habitats. The highest numbers were found in abandoned settlements and old teak plantations. β-diversity was similar among the three DCA ordination groups (degraded forest excluded). Values for β-diversity were relatively high, suggesting that all major forest habitats contribute significantly to regional species pools and should therefore be protected. To enhance arthropod diversity, we propose that management practices in Lama forest should aim to encourage the development of species-rich understorey vegetation of the Guineo-Congolian phytogeographical region.  相似文献   

11.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

12.
The Amazon region represents more than a half of all tropical forests in the world, and has been threatened by many anthropogenic activities, including several kinds of timber harvesting. The reduced-impact logging (RIL) is considered a less destructive method of timber harvesting, but there is a general lack of information about the effects on Amazonian invertebrates, including butterflies. We investigated the effect of RIL on fruit-feeding butterflies by comparing canopy and understory between an area under RIL and a control area without RIL. The canopy fauna is different and significantly richer than the understory fauna, showing that sampling only the lower strata underestimates the diversity of fruit-feeding butterflies. The effects of RIL were mainly detected in the understory butterfly assemblage, as significant differences were observed in species composition within this stratum. Effects of the RIL regime, which include tree cutting, skid trails and roads openings, are stronger in the understory than in the canopy, explaining the reported differences. Despite the detectable effects of RIL on the composition of fruit-feeding butterfly assemblages, the overall diversity was not affected. A similar pattern has been detected in many other groups, indicating that a noticeable part of the diversity of many taxa could be preserved in areas under RIL management. Therefore, in view of the problems of creating protected areas in the Amazon, RIL is a good alternative to preserve fruit-feeding butterflies and surely many other taxa, and it might be a desirable economic alternative for the region.  相似文献   

13.
【目的】生境类型和环境因子对物种分布和维持具有重要的影响。本研究通过分析不同生境类型对蝴蝶群落多样性及其群落结构影响的差异,以及环境因子对蝴蝶物种丰富度和多度的影响,为区域变动尺度蝴蝶多样性维持机制的研究奠定基础。【方法】于2019年8月和10月,在西双版纳地区采用样线法,调查了天然林、次生林、复合生境、人工林和农田5种生境中蝴蝶的物种,分析了蝴蝶群落多样性、群落结构相似性及物种丰富度和多度与环境因子的关系。【结果】2019年从西双版纳共采集蝴蝶2 226头,隶属于11科98属175种,在西双版纳州级尺度上蝴蝶物种丰富度高于县域尺度。在西双版纳州级尺度上,蝴蝶的物种丰富度和多度在5种生境间存在显著差异,而在县域尺度上,物种丰富度、多度和Chao 1物种丰富度估计值没有一致性规律。群落结构相似性结果显示,在西双版纳州级尺度上,蝴蝶群落结构在不同生境类型间存在极显著差异,在县域尺度上,仅勐腊区域蝴蝶群落结构在不同生境类型间存在显著差异。蝴蝶物种丰富度和多度不仅受到生境类型的影响,还受到温度、年均降水和海拔的影响。【结论】本研究结果表明,在区域变动尺度上,生境类型对西双版纳蝴蝶的多样性的影响较大,而温度、年均降水和海拔是维持蝴蝶物种多样性的重要因素。这些发现对当前人类导致的生境丧失和气候变化时代生物多样性的保护具有重要意义。  相似文献   

14.
Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with sparse cover and relatively equal abundance. Shrub cover is highly concentrated in discrete patches. Using overstory tree cover and microsite environmental conditions, four habitats were identified; tree cluster, partial canopy, gap, and rock/shallow soil. Herb and shrub species were strongly linked with habitats. Soil moisture, litter depth and diffuse light were the most significant environmental gradients influencing understory plant distribution. Herb cover was most strongly influenced by soil moisture. Shrub cover is associated with more diffuse light, less direct light, and sites with lower soil moisture. Herb richness is most affected by conditions which influence soil moisture. Richness is positively correlated with litter depth, and negatively correlated with direct light and shrub cover. Disturbance or management practices which change forest floor conditions, shallow soil moisture and direct light are likely to have the strongest effect on Sierran understory abundance and richness.  相似文献   

15.
Production landscapes are rarely considered as priority areas for biodiversity conservation in the tropics. Tree plantations have the potential to provide a conservation service in much of the humid tropics since they are rapidly increasing in extent and present less of a structural contrast with native vegetation than many more intensive agricultural land-uses. We used hierarchical partitioning to examine the factors that influence the value of large-scale Eucalyptus plantations for tropical fruit-feeding butterflies (Lepidoptera: Nymphalidae) in the Brazilian Amazon. We focused on evaluating the importance of landscape versus stand-level factors in determining the diversity and composition of butterfly assemblages, and how butterfly-environment relationships vary within and between subfamilies of Nymphalidae. Native understorey vegetation richness had the strongest independent effect on the richness, abundance and composition of all fruit-feeding butterflies, as well as a subset of species that had been recorded in nearby primary forests. However, overall patterns were strongly influenced by the most abundant subfamily (Satyrinae), and vegetation richness was not related to the abundance of any other subfamily, or non-Satyrinae species, highlighting the importance of disaggregating the fruit-feeding Nymphalidae when examining butterfly-environment relationships. Our results suggest that plantations can help conserve a limited number of forest species, and serve to highlight the research that is necessary to understand better the relationship between fruit-feeding butterflies and environmental variables that are amenable to management.  相似文献   

16.
Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics.  相似文献   

17.
The seasonal flood pulse in Amazonia can be considered a primary driver of community structure in floodplain environments. Although this natural periodic disturbance is part of the landscape dynamics, the seasonal inundation presents a considerable challenge to organisms that inhabit floodplain forests. The present study investigated the effect of seasonal flooding on fruit-feeding butterfly assemblages in different forest types and strata in central Amazonia. We sampled fruit-feeding butterflies in the canopy and the understory using baited traps in adjacent upland (unflooded forests—terra firme), white and blackwater floodplain forests (várzea and igapó, respectively) during the low- and high-water seasons. Butterfly abundance decreased in the high-water season, especially of dominant species in várzea, but the number of species was similar between seasons in the three forest types. Species composition differed between strata in all forest types. However, the flood pulse only affected butterfly assemblages in várzea forest. The β-diversity components also differed only in várzea. Species replacement (turnover) dominated the spatial β-diversity in igapó and terra firme in both seasons and várzea in the high-water season. Nonetheless, nestedness was relatively higher in várzea forests during the low-water season, mainly due to the effect of dominant species. These results emphasize the importance of seasonal flooding to structure butterfly assemblages in floodplain forests and reveal the idiosyncrasy of butterfly community responses to flooding in different forest types. Our results also suggest that any major and rapid changes to the hydrological regime could severely affect floodplain communities adapted to this natural seasonal hydrological cycle, threatening the existence of these unique environments.  相似文献   

18.
Diversity and similarity of butterfly communities were assessed in five different habitat types (from natural closed forest to agricultural lands) in the mountains of Tam Dao National Park, Vietnam for 3 years from 2002 to 2004. The line transect count was used to record species richness and abundance of butterfly communities in the different habitat types. For each habitat, the number of species and individuals, and indices of species richness, evenness and diversity of butterfly communities were calculated. The results indicated that species richness and abundance of butterfly communities were low in the natural closed forest, higher in the disturbed forest, highest in the forest edge, lower in the shrub habitat and lowest in the agricultural lands. The indices of species richness, evenness and diversity of butterfly communities were low in agricultural lands and natural closed forest but highest in the forest edge and shrub habitats. The families Satyridae and Amathusiidae have the greatest species richness and abundance in the natural closed forest, with a reduction in their species richness and abundance from the natural closed forest to the agricultural lands. Species composition of butterfly communities was different among five different habitat types (40%), was similar in habitats outside the forest (68%) and was similar in habitats inside the forest (63%). Diversity and abundance of butterfly communities are not different between the natural closed forest and the agriculture lands, but species composition changed greatly between these habitat types. A positive correlation between the size of species geographical distribution range and increasing habitat disturbance was found. The most characteristic natural closed forest species have the smallest geographical distribution range.  相似文献   

19.
Successful regeneration of secondary tropical forest might be crucial in the conservation of rainforests, since large areas of primary forest have been destroyed or degraded. Animal communities might play an important role in restoration of biological diversity in these secondary habitats, since some groups have high mobility and capacity for dispersal. Fruit-feeding butterflies were trapped to measure differences between butterfly communities in primary rainforest and disturbed forest habitats of different stage of regeneration including clear-cut, abandoned farmland, newly planted forest and middle-aged secondary growth. 3465 specimens representing 114 species were identified from 56 traps operated for 36 days. Extremely high values of rarefied species richness were estimated in the clear-cut habitat, due to the high number of singletons and doubletons. This was caused by a gap-effect that allowed penetration of canopy and open area species after disturbance. The differences between butterfly communities were best demonstrated through ecological composition, richness and abundance of indicator groups and habitat similarity based on Jaccard’s similarity index. The results show a clear ability of butterfly communities in degraded forest habitats to regenerate in 50–60 years after clearance.  相似文献   

20.
小兴安岭凉水自然保护区蝶类多样性   总被引:5,自引:0,他引:5  
顾伟  马玲  刘哲强  焦玥  王利东  张琛  孙虎  孙美欧 《生态学报》2015,35(22):7387-7396
2012—2013年选取原始阔叶红松林、人工林、天然次生林和灌丛草甸4种典型植被生境,对小兴安岭凉水自然保护区的蝶类进行了系统研究。共捕获蝶类1438头,分属7科47属76种,4种植被生境中蝶类群落优势类群均为蛱蝶科,不同生境蝶类群落相似性与生境植被类型密切相关。计算分析了4种植被生境中蝶类多样性指数、物种丰富度、优势度指数、均匀度指数和种-多度关系,结果表明:3种森林生境蝶类多样性大于灌丛草甸,原始阔叶红松林蝶类具有最高的多样性指数、较高的物种丰富度、均匀度指数以及最低的优势度指数,种-多度分布为对数正态分布,说明环境质量优越,最适合蝶类生存和繁衍;灌丛草甸蝶类的多样性指数、物种丰富度和均匀度指数均为最低,而优势度指数最高,种-多度分布为对数级数分布,反映植物群落结构较单一,适合各种蝶类生存和繁衍的资源不足;天然次生林蝶类多样性指数、物种丰富度高于人工林,均匀度小于人工林,但前者种-多度分布为对数级数模型,后者为对数正态模型,说明在封山育林状态下,对森林植被组成进行适当合理的干扰,有利于森林的健康发展  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号