首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
After invasion of red blood cells, malaria matures within the cell by degrading hemoglobin avidly. For enormous protein breakdown in trophozoite stage, many efficient and ordered proteolysis networks have been postulated and exploited. In this study, a potential interaction of a 60-kDa Plasmodium falciparum (Pf)-heat shock protein (Hsp60) and Pf-calpain, a cysteine protease, was explored. Pf-infected RBC was isolated and the endogenous Pf-Hsp60 and Pf-calpain were determined by western blot analysis and similar antigenicity of GroEL and Pf-Hsp60 was determined with anti-Pf-Hsp60. Potential interaction of Pf-calpain and Pf-Hsp60 was determined by immunoprecipitation and immunofluorescence assay. Mizoribine, a well-known inhibitor of Hsp60, attenuated both Pf-calpain enzyme activity as well as P. falciparum growth. The presented data suggest that the Pf-Hsp60 may function on Pf-calpain in a part of networks during malaria growth.  相似文献   

2.
μ-Calpain is a calcium-dependent cysteine protease, which is activated by μM concentration of calcium in vitro. Disrupted intracellular calcium homeostasis leads to hyper-activation of μ-calpain. Hyper-activated μ-calpain enhances the accumulation of β-amyloid peptide by increasing the expression level of β-secretase (BACE1) and induces hyper-phosphorylation of tau along with the formation of neurofibrillary tangle by mediating p35 cleavage into p25, both of which are the major mechanisms of neurodegeneration in Alzheimer's disease (AD). Hence, inhibition of μ-calpain activity is very important in the treatment and prevention of AD. In this study, conjugated linoleic acid (CLA), an eighteen-carbon unsaturated fatty acid, was discovered as a μ-calpain-specific inhibitor. CLA showed neuroprotective effects against neurotoxins such as H2O2 and Aβ1–42 in SH-SY5Y cells, and inhibited Aβ oligomerization/fibrillation and Aβ-induced Zona Occludens-1 degradation. In addition, CLA decreased the levels of proapoptotic proteins, p35 conversion to p25 and tau phosphorylation. These findings implicate CLA as a new core structure for selective μ-calpain inhibitors with neuroprotective effects. CLA should be further evaluated for its potential use as an AD therapeutic agent.  相似文献   

3.
Myoblast differentiation and fusion to multinucleated muscle cells can be studied in myoblasts grown in culture. Calpain (Ca2+-activated thiol protease) induced proteolysis has been suggested to play a role in myoblast fusion. We previously showed that calpastatin (the endogenous inhibitor of calpain) plays a role in cell membrane fusion. Using the red cell as a model, we found that red cell fusion required calpain activation and that fusibility depended on the ratio of cell calpain to calpastatin. We found recently that calpastatin diminishes markedly in myoblasts during myoblast differentiation just prior to the start of fusion, allowing calpain activation at that stage; calpastatin reappears at a later stage (myotube formation). In the present study, the myoblast fusion inhibitors TGF-β, EGTA and calpeptin (an inhibitor of cysteine proteases) were used to probe the relation of calpastatin to myoblast fusion. Rat L8 myoblasts were induced to differentiate and fuse in serum-poor medium containing insulin. TGF-β and EGTA prevented the diminution of calpastatin. Calpeptin inhibited fusion without preventing diminution of calpastatin, by inhibiting calpain activity directly. Protein levels of μ-calpain and m-calpain did not change significantly in fusing myoblasts, nor in the inhibited, non-fusing myoblasts. The results indicate that calpastatin level is modulated by certain growth and differentiation factors and that its continuous presence results in the inhibition of myoblast fusion.  相似文献   

4.
The presence of the calpain-calpastatin system in human umbilical vein endothelial cells (HUVEC) was investigated by means of ion exchange chromatography, Western blot analysis, and Northern blot analysis. On DEAE anion exchange chromatography, calpain and calpastatin activities were eluted at approximately 0.30 M and 0.15-0.25 M NaCl, respectively. For half-maximal activity, the protease required 800 μM Ca2+, comparable to the Ca2+ requirement of m-calpain. By Western blot analysis, the large subunit of μ-calpain (80 kDa) was found to be eluted with calpastatin (110 kDa). Both the large subunit of m-calpain (80 kDa) and calpastatin were detected in the respective active fractions. By Northern blot analysis, mRNAs for large subunits of μ- and m-calpains were detected in single bands, each corresponding to approximately 3.5 Kb. Calpastatin mRNA was observed in two bands corresponding to approximately 3.8 and 2.6 Kb. Furthermore, the activation of μ-calpain in HUVEC by a calcium ionophore was examined, using an antibody specifically recognizing an autolytic intermediate form of μ-calpain large subunit (78 kDa). Both talin and filamin of HUVEC were proteolyzed in a calcium-dependent manner, and the reactions were inhibited by calpeptin, a cell-permeable calpain specific inhibitor. Proteolysis of the cytoskeleton was preceded by the appearance of the autolytic intermediate form of μ-calpain, while the fully autolyzed postautolysis form of μ-calpain (76 kDa) remained below detectable levels at all time points examined. These results indicate that the calpain-calpastatin system is present in human endothelial cells and that μ-calpain may be involved in endothelial cell function mediated by Ca2+ via the limited proteolysis of various proteins. J. Cell. Biochem. 66:197-209, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Cysteine proteases have been implicated in a variety of processes essential for the survival and progression of the malarial parasite Plasmodium falciparum. Here, we synthesized a cysteine protease inhibitor that contains the electrophilic aziridine-2,3-dicarboxylic acid as the reactive agent and biotin as a targeting label. Diethyl ester and dibenzyl ester derivatives of the inhibitor were active against cathepsin L and the plasmodial protease falcipain 2, but only the latter displayed potent antiplasmodial activity against viable parasites. The morphological changes observed during the intraerythrocytic life stages of Plasmodium suggest that degradation of hemoglobin of the host cell is seriously affected, eventually leading to growth arrest and cell death of the parasites. After incubation of infected erythrocytes with the compound plasmodial proteins were captured, with the biotinyl group of the inhibitor serving as an affinity tag. Among these the cysteine proteases falcipain 2 and falcipain 3 were identified as potential target proteins of the compound as evidenced by tandem mass spectrometry. Apparently, the compound gets access to intracellular compartments and therein targets plasmodial cysteine proteases. Accordingly, the reagent described here appears to be a valuable template to develop cell-permeable, non-radioactive reagents that selectively target enzymes involved in pathogenicity of the parasite.  相似文献   

6.
TRPM7 is a Ca2+-permeant and Mg2+-permeant ion channel in possession of its own kinase domain. In a previous study, we showed that overexpression of the channel-kinase in HEK-293 cells produced cell rounding and loss of adhesion, which was dependent on the Ca2+-dependent protease m-calpain. The TRPM7-elicited change in cell morphology was channel-dependent and occurred without any significant increase in cytosolic Ca2+. Here we demonstrate that overexpression of TRPM7 increased levels of cellular reactive oxygen species (ROS) and nitric oxide, causing the activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Application of inhibitors of p38 MAPK and JNK blocked TRPM7-induced cell rounding and activation of m-calpain, without affecting the phosphorylation state of the protease. Overexpression of TRPM7 increased intracellular Mg2+; however, when the concentration of either external Ca2+ or Mg2+ was increased to favor the permeation of one divalent cation over the other, a similar increase in cell rounding and calpain activity was detected, indicating that TRPM7-mediated activation of m-calpain is not dependent on the nature of the divalent conducted by the channel. Application of inhibitors of nitric oxide synthase and mitochondrial-derived ROS reduced TRPM7-induced increases in nitric oxide and ROS production, blocked the change in cell morphology, and reduced cellular calpain activity. Collectively, our data reveal that excessive TRPM7 channel activity causes oxidative and nitrosative stresses, producing cell rounding mediated by p38 MAPK/JNK-dependent activation of m-calpain.  相似文献   

7.
Calpain, a calcium-dependent cysteine protease, is known to associate with the T-cell plasma membrane and subsequently cleave a number of cytoskeletal-associated proteins. In this study, we report the novel observation that calpain II, but not calpain I, associates with membrane lipid rafts on human peripheral blood T-cells and Jurkat cells. Raft-associated calpain activity is enhanced with exogenous calcium and inhibited with calpeptin, a specific inhibitor of calpain activity. In addition, we demonstrate that calpain cleaves the cytoskeletal-associated protein, talin, during the first 30-min after cell stimulation. We propose that lipid raft associated-calpain II could function in early TCR signaling to facilitate immune synapse formation through cytoskeletal remodeling mechanisms. Hence, we demonstrate that the positioning of calpain II within T-cell lipid rafts strategically places it in close proximity to known calpain substrates that are cleaved during Ag-specific T-cell signaling and immune synapse formation.  相似文献   

8.
The calpain system is required by many important physiological processes, including the cell cycle, cytoskeleton remodelling, cellular proliferation, migration, cancer cell invasion, metastasis, survival, autophagy, apoptosis and signalling, as well as the pathogenesis of a wide range of disorders, in which it may function to promote tumorigenesis. Calpains are intracellular conserved calcium-activated neutral cysteine proteinases that are involved in mediating cancer progression via catalysing and regulating the proteolysis of their specific substrates, which are important signalling molecules during cancer progression. μ-calpain, m-calpain, and their specific inhibitor calpastatin are the three molecules originally identified as comprising the calpain system and they contain several crucial domains, specific motifs, and functional sites. A large amount of data supports the roles of the calpain–calpastatin system in cancer progression via regulation of cellular adhesion, proliferation, invasion, metastasis, and cellular survival and death, as well as inflammation and angiogenesis during tumorigenesis, implying that the inhibition of calpain activity may be a potential anti-cancer intervention strategy targeting cancer cell survival, invasion and chemotherapy resistance.  相似文献   

9.
Two inhibitors of the calcium-dependent cysteine protease, calpain, have markedly different effects on the extent of hypertrophy induced by the alpha-adrenergic agonist, phenylephrine, of cultured neonatal rat ventricular myocytes. E64c, an inhibitor of calpain and other cysteine proteases, stimulated the hypertrophy by 59%. PD 150606, a specific calpain inhibitor, reduced the hypertrophy by 38%. Phenylephrine decreased the proteolysis of a calpain substrate by the cells 1–2 h after its addition but not at 24 h. PD 150606 inhibited proteolytic activity at all times, and the combination of phenylephrine and PD 150606 did not give greater inhibition. This suggests that cysteine proteases of the papain sub-family are involved with the hypertrophic response at two points, promoting hypertrophy at the first and limiting it at the second. Calpain appears to be the protease involved at the first point, and there may be another cysteine protease acting at the second site.  相似文献   

10.
DNA damage inducible 1 protein (DDI1) is involved in a variety of cellular processes including proteasomal degradation of specific proteins. All DDI1 proteins contain a ubiquitin-like (UBL) domain and a retroviral protease (RVP) domain. Some DDI1 proteins also contain a ubiquitin-associated (UBA) domain. The three domains confer distinct activities to DDI1 proteins. The presence of a RVP domain makes DDI1 a potential target of HIV protease inhibitors, which also block the development of malaria parasites. Hence, we investigated the DDI1 of malaria parasites to identify its roles during parasite development and potential as a therapeutic target. DDI1 proteins of Plasmodium and other apicomplexan parasites share the UBL-RVP domain architecture, and some also contain the UBA domain. Plasmodium DDI1 is expressed across all the major life cycle stages and is important for parasite survival, as conditional depletion of DDI1 protein in the mouse malaria parasite Plasmodium berghei and the human malaria parasite Plasmodium falciparum compromised parasite development. Infection of mice with DDI1 knock-down P. berghei was self-limiting and protected the recovered mice from subsequent infection with homologous as well as heterologous parasites, indicating the potential of DDI1 knock-down parasites as a whole organism vaccine. Plasmodium falciparum DDI1 (PfDDI1) is associated with chromatin and DNA-protein crosslinks. PfDDI1-depleted parasites accumulated DNA-protein crosslinks and showed enhanced susceptibility to DNA-damaging chemicals, indicating a role of PfDDI1 in removal of DNA-protein crosslinks. Knock-down of PfDDI1 increased susceptibility to the retroviral protease inhibitor lopinavir and antimalarial artemisinin, which suggests that simultaneous inhibition of DDI1 could potentiate antimalarial activity of these drugs. As DDI1 knock-down parasites confer protective immunity and it could be a target of HIV protease inhibitors, Plasmodium DDI1 is a potential therapeutic target for malaria control.  相似文献   

11.
Calpain, calcium-dependent cysteine protease, is reported here to impose the crucial influence on oridonin-induced L929 cell apoptosis and autophagy. We found that inhibition of calpain increased oridonin-induced Bax activation, cytochrome c release and PARP cleavage, indicating that calpain plays an anti-apoptotic role in oridonin-induced L929 cell apoptosis. To explore this potential anti-apoptotic mechanism, we inhibited calpain and proteasome activity in oridonin-induced L929 cell apoptosis, and discovered that the inducible IκBα proteolysis was partially blocked by the inhibition of either calpain or proteasome, but completely blocked by the inhibition of both. It demonstrated that calpain and proteasome were two distinct pathways participating in IκBα degradation. To further study the role of calpain in oridonin-induced L929 cell autophagy, we discovered that calpain inhibitor decreased oridonin-induced autophagy, as well as Beclin 1 activation and the conversion from LC3-I to LC3-II. Moreover, Inhibition of autophagy by 3-MA increased oridonin-induced apoptosis. In conclusion, besides suppressing apoptosis, calpain promotes autophagy in oridonin-induced L929 cell death, and inhibition of autophagy might contribute to up-regulation of apoptosis.  相似文献   

12.
Several recent discoveries of the hallmark features of programmed cell death (PCD) in Plasmodium falciparum have presented the possibility of revealing novel targets for antimalarial therapy. Using a combination of cell-based assays, flow cytometry and fluorescence microscopy, we detected features including mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in parasites induced with chloroquine (CQ) and staurosporine (ST). The use of the pan-caspase inhibitor, z-Val-Ala-Asp-fmk (zVAD), and the mitochondria outer membrane permeabilization (MOMP) inhibitor, 4-hydroxy-tamoxifen, enabled the characterization of a novel CQ-induced pathway linking cysteine protease activation to downstream mitochondrial dysregulation, amplified protease activity and DNA fragmentation. The PCD features were observed only at high (μM) concentrations of CQ. The use of a new synthetic coumarin-labeled chloroquine (CM-CQ) showed that these features may be associated with concentration-dependent differences in drug localization. By further using cysteine protease inhibitors z-Asp-Glu-Val-Asp-fmk (zDEVD), z-Phe-Ala-fmk (zFA), z-Phe-Phe-fmk (zFF), z-Leu-Leu-Leu-fmk (zLLL), E64d and CA-074, we were able to implicate clan CA cysteine proteases in CQ-mediated PCD. Finally, CQ induction of two CQ-resistant parasite strains, 7G8 and K1, reveals the existence of PCD features in these parasites, the extent of which was less than 3D7. The use of the chemoreversal agent verapamil implicates the parasite digestive vacuole in mediating CQ-induced PCD.  相似文献   

13.
Endoplasmic reticulum (ER) stress, implicated in various neurodegenerative processes, increases the level of intracellular Ca2+ and leads to activation of calpain, a Ca2+-dependent cysteine protease. We have shown previously that S-allyl-l-cysteine (SAC) in aged garlic extracts significantly protects cultured rat hippocampal neurons (HPNs) against ER stress-induced neurotoxicity. The neuroprotective effect of SAC was compared with those of the related antioxidant compounds, l-cysteine (CYS) and N-acetylcysteine (NAC), on calpain activity in HPNs and also in vitro. SAC, but not CYS or NAC, reversibly restored the survival of HPNs and increased the degradation of α-spectrin, a substrate for calpain, induced by tunicamycin, a typical ER stress inducer. Activities of μ- and m-calpains in vitro were also concentration dependently suppressed by SAC, but not by CYS or NAC. At submaximal concentration, although ALLN (5 pM), which blocks the active site of calpain, and calpastatin (100 pM), an endogenous calpain-inhibitor protein, additively inhibited μ-calpain activity in vitro in combination with SAC, the effect of PD150606 (25 μM), which prevents interaction of Ca2+ with the Ca2+-binding site of calpain, was unaffected by SAC. In contrast, SAC (1 mM) significantly reversed the effect of PD150606 at a concentration that elicited supramaximal inhibition (100 μM), but did not affect ALLN (1 nM)- and calpastatin (100 nM)-induced inhibition of μ-calpain activity. These results suggest that the protective effects of SAC against ER stress-induced neuronal cell death are not attributable to antioxidant activity, but to suppression of calpain through interaction with its Ca2+-binding site.  相似文献   

14.
Fluid shear stress has been known to activate platelet reaction such as aggregation, but the exact mechanism of shear-induced platelet aggregation (SIPA) has not been fully understood. Calpain, an intracellular calcium-activated cysteine protease, is abundant in platelets and is considered to be activated and involved in the proteolytic processes during platelet activation. A possible activation of calpain in SIPA was investigated, employing a newly developed aggregometer and specific monoclonal antibodies to detect activation of calpain. When a shear stress gradient varying between 6 and 108 dyn/cm2 was applied to platelets, activation of μ-calpain was observed only in high-shear-stressed platelets, resulting in the proteolysis of talin. At 1 min after the onset of constant high shear stress of 108 dyn/cm2, μ-calpain activation and proteolysis of talin were detected and increased in a time-dependent manner. Constant shear stress more than 50 dyn/cm2, applied for 5 min, caused μ-calpain activation and proteolysis of talin, which were increased in a shear-force-dependent manner. Calpeptin, a calpain-specific peptide antagonist, caused the complete inhibition of both μ-calpain activation and proteolysis of talin, while SIPA profiles with calpeptin showed almost no change compared to those without calpeptin. These results suggest the possibility of calpain involvement in late phases of shear-induced platelet activation such as cytoskeletal reorganization. J. Cell. Biochem. 66:54–64, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.  相似文献   

16.
The average polymorphonuclear neutrophil (PMN) lives only a day and then dies by apoptosis. We previously found that the calcium-dependent protease calpain is required for apoptosis in several mouse models of cell death. Here we identify calpain, and its endogenous inhibitor calpastatin, as regulators of human neutrophil apoptosis. Cell death triggered by the translation inhibitor cycloheximide is calpain-dependent, as evidenced using either a calpain active site inhibitor (N-acetyl-leucyl-leucyl-norleucinal) or agents that target calpain's calcium binding sites (PD150606, PD151746). No significant effect on cycloheximide-triggered apoptosis was found by using inhibitors of the proteasome or of other papain-like cysteine proteases, providing further evidence that the active site calpain inhibitor prevents apoptosis via its action on calpain. In addition, we find that potentiation of calpain activity by depleting its endogenous inhibitor, calpastatin, is sufficient to cause apoptosis of neutrophils. Nevertheless, apoptosis signalled via the Fas antigen proceeds regardless of the presence of calpain inhibitor. These experiments support a growing body of work, indicating an upstream regulatory role for calpain in many, but not all, forms of apoptotic cell death. They also identify calpastatin as a participant in apoptotic cell death and suggest that for at least one cell type, a decrease in calpastatin is a sufficient stimulus to initiate calpain-dependent apoptosis. J. Cell. Physiol. 178:311–319, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

17.
Aspartate aminotransferases (AspATs; EC 2.6.1.1) catalyze the conversion of aspartate and α-ketoglutarate into oxaloacetate and glutamate and are key enzymes in the nitrogen metabolism of all organisms. Recent findings suggest that the plasmodial enzyme [Plasmodium falciparum aspartate aminotransferase (PfAspAT)] may also play a pivotal role in energy metabolism and in the de novo biosynthesis of pyrimidines. However, while PfAspAT is a potential drug target, the high homology between the active sites of currently available AspAT structures hinders the development of specific inhibitors of these enzymes. In this article, we report the X-ray structure of the PfAspAT homodimer at a resolution of 2.8 Å. While the overall fold is similar to the currently available structures of other AspATs, the structure presented shows a significant divergence in the conformation of the N-terminal residues. Deletion of these divergent PfAspAT N-terminal residues results in a loss of activity for the recombinant protein, and addition of a peptide containing these 13 N-terminal residues results in inhibition both in vitro and in a lysate isolated from cultured parasites, while the activity of human cytosolic AspAT is unaffected. The finding that the divergent N-terminal amino acids of PfAspAT play a role in catalytic activity indicates that specific inhibition of the enzyme may provide a lead for the development of novel compounds in the treatment of malaria. We also report on the localization of PfAspAT to the parasite cytosol and discuss the implications of the role of PfAspAT in the supply of malate to the parasite mitochondria.  相似文献   

18.
The cellular pathways of apoptosis have not been fully characterized; however, calpain, a cytosolic calcium-activated cysteine protease, has been implicated in several forms of programmed cell death. Reoviruses induce apoptosis both in vitro and in vivo and serve as a model for studying virus-induced cell death. We investigated the potential role of calpain in reovirus-induced apoptosis in vitro by measuring calpain activity as well as evaluating the effects of calpain inhibitors. L929 cells were infected with reovirus type 3 Abney (T3A), and calpain activity, measured as cleavage of the fluorogenic calpain substrate Suc-Leu-Leu-Val-Tyr-AMC, was monitored. There was a 1.6-fold increase in calpain activity in T3A-infected cells compared to mock-infected cells; this increase was completely inhibited by preincubation with calpain inhibitor I (N-acetyl-leucyl-leucyl-norleucinal [aLLN]), an active-site inhibitor. Both aLLN and PD150606, a specific calpain inhibitor that interacts with the calcium-binding site, inhibited reovirus-induced apoptosis in L929 cells by 54 to 93%. Apoptosis induced by UV-inactivated reovirus was also reduced 65 to 69% by aLLN, indicating that inhibition of apoptosis by calpain inhibitors is independent of effects on viral replication. We conclude that calpain activation is a component of the regulatory cascade in reovirus-induced apoptosis.  相似文献   

19.
Calpain is an intracellular nonlysosomal protease involved in essential regulatory or processing functions of the cell, mediated by physiological concentrations of Ca2+. However, in an environment of abnormal intracellular calcium, such as that seen in Duchenne muscular dystrophy (DMD), calpain is suggested to cause degeneration of muscle owing to enhanced activity. To test whether the reported increase in calpain activity in DMD results fromde novo synthesis of the protease, we have assessed the quantitative changes in mRNA specific for m-calpain. mRNA isolated from DMD and control muscle was analysed by dot blot hybridization using a cDNA probe for the large subunit of m-calpain. Compared to control a four-fold increase in specific mRNA was observed in dystrophic muscle. This enhanced expression of the m-calpain gene in dystrophic condition suggests that the reported increase in m-calpain activity results fromde novo synthesis of protease and underlines the important role of m-calpain in DMD.  相似文献   

20.
Calpain, a calcium-dependent cytosolic cysteine protease, is implicated in a multitude of cellular functions but also plays a role in cell death. Recently, we have shown that two ubiquitous isoforms, termed micro-calpain and m-calpain, are expressed in rat pancreatic acinar cells and that calcium ionophore-induced calpain activation leads to acinar cell injury. On the basis of these observations, we have now investigated the role of both calpain forms and the endogenous calpain inhibitor calpastatin in acute pancreatitis. After treatment of rats either without or with calpain inhibitor Z-Val-Phe methyl ester (ZVP; 60 mg/kg i.p.), pancreatitis was induced by cerulein injections (10 microg/kg i.p.; 5 times at hourly intervals). Calpain activation and calpastatin expression in the pancreatic tissue were studied by Western blot analysis. Pancreatic injury was assessed by plasma amylase activity, pancreatic wet/dry weight ratio (edema), histological and electron-microscopic analyses, as well as fluorescence labeling of actin filaments. Cerulein caused an activation of both micro-calpain and m-calpain, accompanied by degradation of calpastatin. Prophylactic administration of ZVP reduced the cerulein-induced calpain activation but had no effect on calpastatin alterations. In correlation to the diminished calpain activity, the severity of pancreatitis decreased as indicated by a decline in amylase activity (P < 0.01), pancreatic edema formation (P < 0.05), histological score for eight parameters (P < 0.01), and actin filament alterations. Our findings support the hypothesis that dysregulation of the calpain-calpastatin system may play a role in the onset of acute pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号