首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
Sex-determination mechanisms in birds and mammals evolved independently for more than 300 million years. Unlike mammals, sex determination in birds operates through a ZZ/ZW sex chromosome system, in which the female is the heterogametic sex. However, the molecular mechanism remains to be elucidated. Comparative gene mapping revealed that several genes on human chromosome 9 (HSA 9) have homologs on the chicken Z chromosome (GGA Z), indicating the common ancestry of large parts of GGA Z and HSA 9. Based on chromosome homology maps, we isolated a Z-linked chicken ortholog of DMRT1, which has been implicated in XY sex reversal in humans. Its location on the avian Z and within the sex-reversal region on HSA 9p suggests that DMRT1 represents an ancestral dosage-sensitive gene for vertebrate sex-determination. Z dosage may be crucial for male sexual differentiation/determination in birds.  相似文献   

5.
6.
Unlike mammals, birds have a ZZ male/ZW female sex-determining system. In most birds, the Z is large and gene rich, whereas the W is small and heterochromatic, but the ancient group of ratite birds are characterized by sex chromosomes that are virtually homomorphic. Any gene differentially present on the ratite Z and W is therefore a strong candidate for a sex-determining role. We have cloned part of the candidate bird sex-determining gene DMRT1 from the emu, a ratite bird, and have shown that it is expressed during the stages of development corresponding to gonadal differentiation in the chicken. The gene maps to the distal region of the Z short arm and is absent from the large W chromosome. Because most sequences on the emu W chromosome are shared with the Z, the Z-specific location constitutes strong evidence that differential dosage of DMRT1 is involved in sex determination in all birds. The sequence of emu DMRT1 has 88% homology with chicken DMRT1 and 65% with human DMRT1. Unexpectedly, an unexpressed 270-bp region in intron 3 of emu DMRT1 showed 90% homology with a sequence in the corresponding intron of human DMRT1. This extraordinarily high conservation across 300 million years of evolution suggests an important function, perhaps involved in control of DMRT1 expression and vertebrate sex determination.  相似文献   

7.
Hans Ellegren   《Current biology : CB》2009,19(19):634-R910
The molecular mechanism of sex determination in birds has long remained mysterious. Genetically male chicken embryos, which have two Z sex chromosomes, develop female gonads when the Z chromosome-linked gene DMRT1 is knocked out. This suggests that sex is determined by Z chromosome dosage.  相似文献   

8.
Sex determination and sexual differentiation in the avian model   总被引:2,自引:0,他引:2  
Chue J  Smith CA 《The FEBS journal》2011,278(7):1027-1034
The sex of birds is determined by the inheritance of sex chromosomes (ZZ male and ZW female). Genes carried on one or both of these sex chromosomes control sexual differentiation during embryonic life, producing testes in males (ZZ) and ovaries in females (ZW). This minireview summarizes our current understanding of avian sex determination and gonadal development. Most recently, it has been shown that sex is cell autonomous in birds. Evidence from gynandromorphic chickens (male on one side, female on the other) points to the likelihood that sex is determined directly in each cell of the body, independently of, or in addition to, hormonal signalling. Hence, sex-determining genes may operate not only in the gonads, to produce testes or ovaries, but also throughout cells of the body. In the chicken, as in other birds, the gonads develop into ovaries or testes during embryonic life, a process that must be triggered by sex-determining genes. This process involves the Z-linked DMRT1 gene. If DMRT1 gene activity is experimentally reduced, the gonads of male embryos (ZZ) are feminized, with ovarian-type structure, downregulation of male markers and activation of female markers. DMRT1 is currently the best candidate gene thought to regulate gonadal sex differentiation. However, if sex is cell autonomous, DMRT1 cannot be the master regulator, as its expression is confined to the urogenital system. Female development in the avian model appears to be shared with mammals; both the FOXL2 and RSPO1/WNT4 pathways are implicated in ovarian differentiation.  相似文献   

9.
Sex is determined genetically in all birds, but the underlying mechanism remains unknown. All species have a ZZ/ZW sex chromosome system characterised by female (ZW) heterogamety, but the chromosomes themselves can be heteromorphic (in most birds) or homomorphic (in the flightless ratites). Sex in birds might be determined by the dosage of a Z-linked gene (two in males, one in females) or by a dominant ovary-determining gene carried on the W sex chromosome, or both. Sex chromosome aneuploidy has not been conclusively documented in birds to differentiate between these possibilities. By definition, the sex chromosomes of birds must carry one or more sex-determining genes. In this review of avian sex determination, we ask what, when and where? What is the nature of the avian sex determinant? When should it be expressed in the developing embryo, and where is it expressed? The last two questions arise due to evidence suggesting that sex-determining genes in birds might be operating prior to overt sexual differentiation of the gonads into testes or ovaries, and in tissues other than the urogenital system.  相似文献   

10.
Based on its Z-sex-chromosomal location and its structural homology to male sexual regulatory factors in humans (DMRT1 and DMRT2), Drosophila (Dsx), and Caenorhabditis elegans (Mab-3), chicken DMRT1 is an excellent candidate for a testis-determining factor in birds. The data we present provide further strong support for this hypothesis. By whole mount in situ hybridization chicken DMRT1 is expressed at higher levels in the male than in the female genital ridges during early stages of embryogenesis. Its expression becomes testis-specific after onset of sexual differentiation. Northern blot and RT PCR analysis showed that in adult birds DMRT1 is expressed exclusively in the testis. We propose that two gene dosages are required for testis formation in ZZ males, whereas expression from a single Z chromosome in ZW females leads to female sexual differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号