首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD) event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish.  相似文献   

2.
3.
军曹鱼线粒体DNA全序列与鲹鱼宗系的系统进化   总被引:1,自引:0,他引:1  
通过长距PCR法测得军曹鱼(Rachycentron canadum)全长16758 bp的mtDNA基因组全序列(GenBank登录号:FJ154956和NC011219),结构组成与其他硬骨鱼类基本一致。Blast获取GenBank数据库的高相似度(score=10055—30213)全序列数据,运用最大简约法、邻位连接法、最大似然法和贝叶斯法重建了军曹鱼与其他鱼类的系统发育关系,并采样用松散分子钟(Uncorrected relaxed lognormal clock)对军曹鱼的起源时间进行了估算,结果表明:(1)军曹鱼与鲯鳅科的亲缘关系较参与分析的其他鱼类更为密切(后验概率为0.997),推测军曹鱼大约起源于56百万年(Million years ago,Ma)前的古新世塔内特阶(Thanetian)时期;(2)军曹鱼科、鲯鳅科和印鱼科聚为一支,但其置信度较低(后验概率为0.593),且丝帆鱼科、鲹科分别与鲭科和鲀科鱼类聚为不同分支,因此不支持鲹鱼宗系(Carangoid lineage)为单系群。  相似文献   

4.
Cyclooxygenase (COX) produces prostaglandins in animals via the oxidation and reduction of arachidonic acid. Different types and numbers of COX genes have been found in corals, sea squirts, fishes, and tetrapods, but no study has used a comparative phylogenetic approach to investigate the evolutionary history of this complex gene family. Therefore, to examine COX evolution in the teleosts and chordates, 9 novel COX sequences (possessing residues and domains critical to COX function) were acquired from the euryhaline killifish, longhorn sculpin, sea lamprey, Atlantic hagfish, and amphioxus using standard polymerase chain reaction (PCR) and cloning methods. Phylogenetic analyses of these and other COX sequences show a complicated history of COX duplications and losses. There are three main lineages of COX in the chordates corresponding to the three subphyla in the phylum Chordata, with each lineage representing an independent COX duplication. Hagfish and lamprey most likely have traditional COX-1/2 genes, suggesting that these genes originated with the first round of genome duplication in the vertebrates according to the 2R hypothesis and are not exclusively present in the gnathostomes. All teleosts examined have three COX genes due to a teleost-specific genome duplication followed by variable loss of a COX-1 (in the zebrafish and rainbow trout) or COX-2 gene (in the derived teleosts). Future studies should examine the functional ramifications of these differential gene losses.  相似文献   

5.
Walter Heiligenberg (1938–1994) was an exceptionally gifted behavioral physiologist who made enormous contributions to the analysis of behavior and to our understanding of how the brain initiates and controls species-typical behavioral patterns. He was distinguished by his rigorous analytical approach used in both behavioral studies and neuroethological investigations. Among his most significant contributions to neuroethology are a detailed analysis of the computational rules governing the jamming avoidance response in weakly electric fish and the elucidation of the principal neural pathway involved in neural control of this behavior. Based on his work, the jamming avoidance response is perhaps the best-understood vertebrate behavior pattern in terms of the underlying neural substrate. In addition to this pioneering work, Heiligenberg stimulated research in a significant number of other areas of ethology and neuroethology, including: the quantitative assessment of aggressivity in cichlid fish; the ethological analysis of the stimulus–response relationship in the chirping behavior of crickets; the exploration of the neural and endocrine basis of communicatory behavior in weakly electric fish; the study of cellular mechanisms of neuronal plasticity in the adult fish brain; and the phylogenetic analysis of electric fishes using a combination of morphology, electrophysiology, and mitochondrial sequence data.T. H. Bullock: deceased 2005  相似文献   

6.
Recent progress in primatology, neurology and psychology has made it possible to begin to synthesize and combine the data and concepts from these fields into the physical anthropological approach to child growth and development. This paper attempts to conceptualize this new biobehavioral approach, reviewing two studies which exemplify it, already under research at the Krogman Growth Center. The first, which deals with mother-newborn social interaction, explores neonate attachment behaviors and predictable maternal response. The methodology of this study relies heavily on ethological techniques. The second study, involving pre-pubescent and post-pubescent same sex twins, aims to delineate the genetic and environmental components of certain human behavioral qualities, such as intelligence, using the genetic approach to human variation. The problem of how this possibly interacts with the secular trend is also discussed.  相似文献   

7.
Understanding the effects of environmental change on natural ecosystems is a major challenge, particularly when multiple stressors interact to produce unexpected “ecological surprises” in the form of complex, nonadditive effects that can amplify or reduce their individual effects. Animals often respond behaviorally to environmental change, and multiple stressors can have both population‐level and community‐level effects. However, the individual, not combined, effects of stressors on animal behavior are commonly studied. There is a need to understand how animals respond to the more complex combinations of stressors that occur in nature, which requires a systematic and rigorous approach to quantify the various potential behavioral responses to the independent and interactive effects of stressors. We illustrate a robust, systematic approach for understanding behavioral responses to multiple stressors based on integrating schemes used to quantitatively classify interactions in multiple‐stressor research and to qualitatively view interactions between multiple stimuli in behavioral experiments. We introduce and unify the two frameworks, highlighting their conceptual and methodological similarities, and use four case studies to demonstrate how this unification could improve our interpretation of interactions in behavioral experiments and guide efforts to manage the effects of multiple stressors. Our unified approach: (1) provides behavioral ecologists with a more rigorous and systematic way to quantify how animals respond to interactions between multiple stimuli, an important theoretical advance, (2) helps us better understand how animals behave when they encounter multiple, potentially interacting stressors, and (3) contributes more generally to the understanding of “ecological surprises” in multiple stressors research.  相似文献   

8.
Like stomatogastric activity in crustaceans, vocalization in teleosts and frogs, and locomotion in mammals, the electric organ discharge (EOD) of weakly electric fish is a rhythmic and stereotyped electromotor pattern. The EOD, which functions in both perception and communication, is controlled by a two‐layered central pattern generator (CPG), the electromotor CPG, which modifies its basal output in response to environmental and social challenges. Despite major anatomo‐functional commonalities in the electromotor CPG across electric fish species, we show that Gymnotus omarorum and Brachyhypopomus gauderio have evolved divergent neural processes to transiently modify the CPG outputs through descending fast neurotransmitter inputs to generate communication signals. We also present two examples of electric behavioral displays in which it is possible to separately analyze the effects of neuropeptides (mid‐term modulation) and gonadal steroid hormones (long‐term modulation) upon the CPG. First, the nonbreeding territorial aggression of G. omarorum has been an advantageous model to analyze the status‐dependent modulation of the excitability of CPG neuronal components by vasotocin. Second, the seasonal and sexually dimorphic courtship signals of B. gauderio have been useful to understand the effects of sex steroids on the responses to glutamatergic inputs in the CPG. Overall, the electromotor CPG functions in a regime that safeguards the EOD waveform. However, prepacemaker influences and hormonal modulation enable an enormous versatility and allows the EOD to adapt its functional state in a species‐, sex‐, and social context‐specific manners.  相似文献   

9.
Mormyrid fish communicate and navigate using electric organ discharges (EODs). The EOD is highly stereotyped and provides information on sender identity, including species, sex, reproductive condition, and possibly relative status and individual identity. By contrast, the sequence of pulse intervals (SPI) is variable and plays more of a role in signaling behavioral states. Various types of SPI displays may be produced, including tonic patterns such as 'random' and 'regularized', and phasic patterns such as 'bursts' and cessations'. Certain displays have been linked to specific behaviors such as aggression, submission, courtship and active exploration. In addition, interacting pairs of fish may produce stereotyped displays involving the relative timing of their EODs. The EOD waveform is controlled by the morphological and physiological properties of cells in the electric organ termed electrocytes. Differences in the innervation, morphology, size and membrane characteristics of electrocytes have been directly linked to species and sex differences in the EOD. The generation of each EOD is initiated in the medullary command nucleus (CN), which thereby determines the timing of EOD output. CN does not have any properties of a pacemaker, but rather appears to integrate descending inputs that affect the probability of EOD production. The precommand nucleus (PCN) provides a major source of excitatory input to CN and is itself inhibited by corollary discharge feedback following the production of each EOD. Changes in the activity of PCN and its inhibitory feedback neurons modify EOD output, and therefore drive the generation of SPI patterns. Current studies are addressing the mechanisms underlying the generation of these patterns and preliminary results suggest that different types of signals may be controlled by distinct components of the electromotor system. This is similar to findings in other electrogenic teleosts, suggesting that it may be a general feature in the motor control of signaling behavior.  相似文献   

10.
According to current phylogenetic theory, both electroreceptors and electric organs evolved multiple times throughout the evolution of teleosts. Two basic types of electroreceptors have been described: ampullary and tuberous electroreceptors. Ampullary‐type electroreceptors appeared once in the common ancestor of the Siluriformes+Gymnotiformes (within the superorder Ostariophysi), and on two other occasions within the superorder Osteoglossomorpha: in the African Mormyriformes and in the African Notopteriformes. Tuberous receptors are assumed to have evolved three times; all within groups that already possessed ampullary receptors. With the exception of a single catfish species, for which studies are still lacking, all fish with tuberous electroreceptors also have an electric organ. Tuberous electroreceptors are found in the two unrelated electrogenic teleost lineages (orders Gymnotiformes and Mormyriformes) and in one non‐electrogenic South American catfish species (order Siluriformes). Electric organs evolved eight times independently among teleosts: five of them among the ostariophysans (once in the gymnotiform ancestor and in four siluriform lineages), once in the common ancestor of Mormyriformes, and in two uranoscopids. With the exception of two uranoscopid genera, for which no electroreceptive capabilities have been discovered so far, all electric organs evolved as an extension of a pre‐existing electroreceptive (ampullary) condition. It is suggested that plesiomorphic electric organ discharges (EODs) possessed a frequency spectrum that fully transgressed the tuning curve of ampullary receptors, i.e. a signal such as a long lasting monophasic pulse. Complex EOD waveforms appeared as a derived condition among electric fish. EODs are under constant evolutionary pressure to develop an ideal compromise between a function that enhances electrolocation and electrocommunication capabilities, and thereby ensures species identity through sexual and behavioural segregation, and minimizes the risk of predation.  相似文献   

11.
12.
The pelvic fins of teleosts are paired appendages that are considered to be homologous to the hind limbs of tetrapods. Because they are less important for swimming, their morphology and function can be flexibly modified, and such modifications have probably facilitated the adaptations of teleosts to various environments. Recently, among these modifications, pelvic-fin loss has gained attention in evolutionary developmental biology. Pelvic-fin loss, however, has only been investigated in a few model species, and various biological aspects of pelvic fins in teleosts in general remain poorly understood. This review summarizes the current state of knowledge regarding pelvic fins, such as their structure, function and evolution, to elucidate their contribution to the considerable diversity of teleosts. This information could be invaluable for future investigations into various aspects of pelvic fins, which will provide clues to understanding the evolution, diversity and adaptations of teleosts.  相似文献   

13.
Animals face different threats; to survive, they have to anticipate how to react or how to avoid these. It has already been shown in teleosts that selected regions in the telencephalon, i.e., the medial pallium, are involved in avoidance learning strategies. No such study exists for any chondrichthyan. In nature, an avoidance reaction may vary, ranging from a ‘freeze’ reaction to a startling response and quick escape. This study investigated whether elasmobranchs (Chiloscyllium griseum and C. punctatum) can be conditioned in an aversive classical conditioning paradigm. Upon successful conditioning, the dorsal, medial and lateral pallium were removed (group 1) and performance tested again. In a second group, the same operation was performed prior to training. While conditioning was successful in individuals of both groups, no escape responses were observed. Post-operative performance was assessed and compared between individual and groups to reveal if the neural substrates governing avoidance behavior or tasks learned in a classical conditioning paradigm are located within the telencephalon, as has been shown for teleosts such as goldfish.  相似文献   

14.
Skates discharge an electrical current too weak to be used for predation or defense, and too infrequent and irregular to be used for electrolocation. Additionally, skates possess a specialized sensory system that can detect electrical stimuli at the same strength at which they discharge their organs. These two factors are suggestive of a communicative role for the electric organ in skates, a role that has been demonstrated in similarly weakly electric teleosts (e.g., mormyrids and gymnotiforms). There is evidence that the sexual and ontogenetic variations in the electric organ discharge (EOD) in these other weakly electric fishes are linked to morphological variations in electric organs and the electrogenerating cells of the organs, the electrocytes. Little work has been done to examine possible sexual and ontogenetic variations in skate EODs or variations in the electrocytes responsible for those discharges. Electric organs and electrocyte morphology of male and female, and mature and immature little skates, Leucoraja erinacea, are characterized here. Female electric organs were bigger than male electric organs. This is suggestive of a sexually dimorphic EOD waveform or amplitude, which might be used as a sex-specific identification signal during courtship. The shapes of electrocytes that make up the organ were found to be significantly different between mature and immature individuals and, in some cases, posterior membrane surface area of the electrocytes increased at the onset of maturity due to the formation of membrane surface invaginations and papillae. This is evidence that the EOD of skates may differ in its waveform or amplitude or frequency between mature and immature skates, and act as a signal for readiness to mate. This study supports a communicative role during courtship for the weak electric organs of little skates, but studies that characterize skate EOD dimorphisms are needed to corroborate this speculation before conclusions can be drawn about the role the electric organ plays in communication during courtship.  相似文献   

15.
Katsov AY  Clandinin TR 《Neuron》2008,59(2):322-335
Motion vision is an ancient faculty, critical to many animals in a range of ethological contexts, the underlying algorithms of which provide central insights into neural computation. However, how motion cues guide behavior is poorly understood, as the neural circuits that implement these computations are largely unknown in any organism. We develop a systematic, forward genetic approach using high-throughput, quantitative behavioral analyses to identify the neural substrates of motion vision in Drosophila in an unbiased fashion. We then delimit the behavioral contributions of both known and novel circuit elements. Contrary to expectation from previous studies, we find that orienting responses to motion are shaped by at least two neural pathways. These pathways are sensitive to different visual features, diverge immediately postsynaptic to photoreceptors, and are coupled to distinct behavioral outputs. Thus, behavioral responses to complex stimuli can rely on surprising neural specialization from even the earliest sensory processing stages.  相似文献   

16.
Functional properties of myofibrils and relative stability of myosin of five teleosts Channa punctata, Clarias batrachus, M astacembalus armatus, Labeo rohita and Catla catla adapted to different breathing modes were compared. Myofibrillar contractility and m-ATPase of air-breathing organ (ABO) possessing C.punctata and C. batrachus were low and least affected by pH in the range of 7.1-8.5. However, their myosin isoforms were relatively thermostable, more soluble at sub-neutral pH values, between 0.1 to 0.15 M KCl concentrations and less susceptible to a-chymotryptic digestion. In contrast, myofibrils and myosin of water-breather major carps L. rohita and C. catla were more contractile and susceptible to pH and salt concentrations. Thus, correlation between catalytic efficiency and relative stability of myofibrils and myosin of ABO-possessing teleosts was of reverse order and magnitude, as compared to water-breathers. Interestingly, myofibrils and myosin of the behavioral air-breather M. armnatus showed intermediate properties. The specific levels of m-ATPase of all the five teleosts were in conformity with the levels of metabolic marker, the lactate dehydrogenase. The effect of chymotryptic cleavage of 94 and 173 kDa domains on ATPase, individuality of peptide maps of MyHC isomers and perturbation of phenylalanine residues by urea implicated hydrophobic residues in stabilizing myosin structure in these fish. The present study suggests two apparent evolutionary modifications of myofibrils and myosin in ABO-possessing teleosts: (i), 'down-regulation' of ATPase that explains sluggishness of such species and, (ii), more stable molecular structure to support stress of air-breathing modes of life.  相似文献   

17.
Whole organism performance represents the integration of numerousphysiological, morphological, and behavioral traits. How adaptivechanges in performance evolve therefore requires an understandingof how selection acts on multiple integrated traits. Two approachesthat lend themselves to studying the evolution of performancein natural populations are the use of quantitative geneticsmodels for estimating the strength of selection acting on multiplequantitative traits and ecological genetic comparisons of populationsexhibiting phenotypic differences correlated with environmentalvariation. In both cases, the ultimate goal is to understandhow suites of traits and trade-offs between competing functionsrespond to natural selection. Here we consider how these twocomplimentary approaches can be applied to study the adaptiveevolution of escape performance in fish. We first present anextension of Arnold's (1983) quantitative genetic approach thatexplicitly considers how trade-offs between different componentsof performance interact with the underlying genetics. We proposethat such a model can reveal the conditions under which multipleselection pressures will cause adaptive change in traits thatinfluence more than one component of fitness. We then reviewwork on the Atlantic silversides and Trinidadian guppies astwo case studies where an ecological genetics approach has beensuccessfully applied to evaluate how the evolution of escapeperformance trades-off with other components of fitness. Weconclude with the general lesson that whole organism performanceis embedded in a complex phenotype, and that the net outcomeof selection acting on different aspects of the organism willoften result in a compromise among competing influences.  相似文献   

18.
19.
Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.  相似文献   

20.
Bier M 《Bioelectromagnetics》2005,26(7):595-609
The possible physiological effect of power frequency fields (60 Hz in the US, 50 Hz in most other countries) is still a hotly debated issue. These relatively slow fields distribute themselves across cell membranes and a common approach has been to compare the strength of these fields to the strength of the electric noise that the membrane generates itself through Brownian motion. However, there has been disagreement among researchers on how to evaluate the membrane electric noise. In the first part of this article three major models are discussed. In the second part an ab initio modeling of membrane electric fields finds that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Finally, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号