首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In D. melanogaster, resistance to starvation and desiccation vary in opposite directions across a geographical gradient in India but there is lack of such clinal variation on other continents. However, it is not clear whether these resistance traits or other correlated traits are the target of natural selection. For resistance to starvation or desiccation in D. melanogaster, we tested the hypothesis whether body color phenotypes and energy metabolites show correlated selection response. Our results are interesting in several respects. First, based on within population analysis, assorted darker and lighter flies from a given population showed that darker flies store higher amount of trehalose and confer greater desiccation resistance as compared with lighter flies. By contrast, lighter flies store higher lipids content and confer increased starvation tolerance. Thus, there is a trade-off for energy metabolites as well as body color phenotypes for starvation and desiccation stress. Further, trait associations within populations reflect similar patterns in geographical populations. Second, we found opposite clines for trehalose and body lipids. Third, coadapated phenotypes have evolved under contrasting climatic conditions i.e. drier and colder northern localities select darker flies with higher trehalose as well as desiccation resistance while hot and humid localities favor lighter flies with higher lipids level and greater starvation tolerance. Thus, the evolution of coadapated phenotypes associated with starvation and desiccation resistance might have resulted due to specific ecological conditions i.e. humidity changes on the Indian subcontinent.  相似文献   

2.
Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40?h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150?h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.  相似文献   

3.
Melanism seems to have evolved independently through diverse mechanisms in various taxa and different ecological factors could be responsible for selective responses. Increased body melanization at higher altitudes as well as latitudes is generally considered to be adaptive for thermoregulation. Physiological traits such as body melanization and desiccation resistance have been investigated independently in diverse insect taxa at three levels: within populations, between populations and among species. A substantial number of Drosophila studies have reported clinal variations in both these traits along latitude. A possible link between these traits had remained unexplored in wild and laboratory populations of ectothermic insect taxa, including drosophilids, to date. Simultaneous analysis of these traits in assorted darker and lighter phenotypes in each population in the present study showed parallel changes for body melanization and desiccation resistance. The mechanistic basis of evolving desiccation resistance was explained on the basis of differential rates of water loss per hour in darker versus lighter phenotypes in six populations of Drosophila melanogaster from adjacent localities differing substantially in altitude all along the Indian subcontinent. Data on cuticular impermeability suggest a possible role of melanization in desiccation tolerance. However, substantial gaps remain in extending these results to other insect taxa and further exploring the physiological and molecular changes involved in melanization for conferring desiccation resistance.  相似文献   

4.
Energy availability can limit the ability of organisms to survive under stressful conditions. In Drosophila, laboratory experiments have revealed that energy storage patterns differ between populations selected for desiccation and starvation. This suggests that flies may use different sources of energy when exposed to these stresses, but the actual substrates used have not been examined. We measured lipid, carbohydrate, and protein content in 16 Drosophila species from arid and mesic habitats. In five species, we measured the rate at which each substrate was metabolized under starvation or desiccation stress. Rates of lipid and protein metabolism were similar during starvation and desiccation, but carbohydrate metabolism was several-fold higher during desiccation. Thus, total energy consumption was lower in starved flies than desiccated ones. Cactophilic Drosophila did not have greater initial amounts of reserves than mesic species, but may have lower metabolic rates that contribute to stress resistance.  相似文献   

5.
Parallel clines for starvation resistance and lipid content are well documented among drosophilids on the Indian subcontinent. However, the mechanistic basis of these clines has not been investigated so far. Here, we investigate the utilization of lipids during starvation as a function of duration of stress in D. ananassae. We found higher lipid content responsible for high starvation resistance at lower latitudes. Lipids were utilized during starvation only; not during any other climatic stresses like desiccation or thermal stresses. We also found a cline for consumption of total body lipids; as more content (out of total amount of lipids) was utilized by flies at lower latitudes and lesser at higher latitudes. But, there was no latitudinal cline for threshold lipid amount in the case of females while for males there was a positive cline. Lastly, parallel clines have evolved under contrasting climatic conditions i.e. drier and colder northern localities have flies with lower lipid and reduced starvation resistance while hot and humid localities favor flies with higher lipid levels and greater starvation tolerance. Thus, the evolution of clines associated with starvation and lipid content might have resulted due to specific ecological conditions i.e. humidity gradient on the Indian subcontinent.  相似文献   

6.
Wild caught samples of Drosophila melanogaster from five highland localities showed parallel changes in melanisation and desiccation resistance in darker versus lighter phenotypes, i.e. darker flies (>45% melanisation) showed significantly higher desiccation resistance than lighter flies (<30% melanisation). In order to find an association between body melanisation and desiccation resistance, highland and lowland populations from tropical and subtropical regions (11.15-31.06 degrees N) of the Indian subcontinent were raised and investigated at 21 degrees C for four physiological traits, i.e. per cent body melanisation, desiccation resistance, rate of water loss and rate of water absorption. On the basis of mother-offspring regression, body melanisation and desiccation resistance showed higher heritability (0.58-0.68) and thus these traits are suitable for laboratory analyses. Significantly higher melanisation as well as desiccation resistance were observed in highland populations as compared with lowland populations. The rates of water loss as well as absorption were negatively correlated with body melanisation, i.e. darker flies from highlands showed a reduced rate of water loss as well as a lower rate of water absorption while the reverse trend was observed in lighter flies from lowlands. On the basis of multiple regressions, significant effects due to combined altitude and latitude were observed for all the four physiological traits. Local climatic conditions (i.e. annual average temperature and relative humidity) helped in explaining parallel changes in body melanisation and desiccation resistance in D. melanogaster.  相似文献   

7.
In the Indian subcontinent, there are significant between-population variations in desiccation resistance in Drosophila melanogaster, but the physiological basis of adult acclimation responses to ecologically relevant humidity conditions is largely unknown. We tested the hypothesis that increased desiccation resistance in acclimated flies is associated with changes in cuticular permeability and/or content of energy metabolites that act as osmolytes. Under an ecologically relevant humidity regime (~50 % relative humidity), both sexes showed desiccation acclimation which persisted for 2–3 days. However, only females responded to acclimation at ~5 % relative humidity (RH). Acclimated flies exhibited no changes in the rate of water loss, which is consistent with a lack of plastic changes in cuticular traits (body melanization, epicuticular lipid). Therefore, changes in cuticular permeability are unlikely in drought-acclimated adult flies of D. melanogaster. In acclimated flies, we found sex differences in changes in the content of osmolytes (trehalose in females versus glycogen in males). These sex-specific changes in osmolytes are rapid and reversible and match to corresponding changes in the increased desiccation resistance levels of acclimated flies. Further, the increased content of trehalose in females and glycogen in males support the bound-water hypothesis for water retention in acclimated flies. Thus, drought acclimation in adult flies of D. melanogaster involves inducible changes in osmolytes (trehalose and glycogen), while there is little support for changes in cuticular permeability.  相似文献   

8.
A fundamental question in life‐history evolution is how organisms cope with fluctuating environments, including variation between stressful and benign conditions. For short‐lived organisms, environments commonly vary between generations. Using a novel experimental design, we exposed wild‐derived Drosophila melanogaster to three different selection regimes: one where generations alternated between starvation and benign conditions, and starvation was always preceded by early exposure to cold; another where starvation and benign conditions alternated in the same way, but cold shock sometimes preceded starvation and sometimes benign conditions; and a third where conditions were always benign. Using six replicate populations per selection regime, we found that selected flies increased their starvation resistance, most strongly for the regime where cold and starvation were reliably combined, and this occurred without decreased fecundity or extended developmental time. The selected flies became stress resistant, displayed a pronounced increase in early life food intake and resource storage. In contrast to previous experiments selecting for increased starvation resistance in D. melanogaster, we did not find increased storage of lipids as the main response, but instead that, in particular for females, storage of carbohydrates was more pronounced. We argue that faster mobilization of carbohydrates is advantageous in fluctuating environments and conclude that the phenotype that evolved in our experiment corresponds to a compromise between the requirements of stressful and benign environments.  相似文献   

9.
Conservation of water is critical to the ecological success of Drosophila species living in the drier montane localities of the Western Himalayas. We observed clinal variation in desiccation resistance for both sexes of Drosophila kikkawai from an altitudinal transect (512–2226 m above sea level). Since more than 90 per cent of body water is lost through cuticular transpiration, the target of selection may be cuticular lipids or cuticular melanization. We tested whether melanic females and non-melanic males of D. kikkawai have similar mechanisms of desiccation resistance. There is clinal variation in the amount of cuticular lipids per fly in males, but not in females. By contrast, for females, elevational increase in melanization is positively correlated with desiccation resistance and negatively with cuticular water loss, but there is no variation in the amount of cuticular lipids. Thus, sexual dimorphism for the mechanism of desiccation resistance in D. kikkawai matches the water proofing role of body melanization as well as cuticular lipids.  相似文献   

10.
Water balance mechanisms have been investigated in desert Drosophila species of the subgenus Drosophila from North America, but changes in mesic species of subgenus Drosophila from other continents have received lesser attention. We found divergent strategies for coping with desiccation stress in two species of immigrans group--D. immigrans and D. nasuta. In contrast to clinal variation for body melanization in D. immigrans, cuticular lipid mass showed a positive cline in D. nasuta across a latitudinal transect (10°46'-31°43'N). Based on isofemale lines variability, body melanization showed positive correlation with desiccation resistance in D. immigrans but not in D. nasuta. The use of organic solvents has supported water proofing role of cuticular lipids in D. nasuta but not in D. immigrans. A comparative analysis of water budget of these two species showed that higher water content, reduced rate of water loss and greater dehydration tolerance confer higher desiccation resistance in D. immigrans while the reduced rate of water loss is the only possible mechanism to enhance desiccation tolerance in D. nasuta. We found that carbohydrates act as metabolic fuel during desiccation stress in both the species, whereas their rates of utilization differ significantly between these two species. Further, acclimation to dehydration stress improved desiccation resistance due to increase in the level of carbohydrates in D. immigrans but not in D. nasuta. Thus, populations of D. immigrans and D. nasuta have evolved different water balance mechanisms under shared environmental conditions. Multiple measures of desiccation resistance in D. immigrans but reduction in water loss in D. nasuta are consistent with their different levels of adaptive responses to wet and dry conditions on the Indian subcontinent.  相似文献   

11.
In Drosophila melanogaster, clines of starvation resistance along a latitudinal gradient (south to north) have been reported in India, which matched with their cline for total body lipids (TL). Nevertheless, producing too many reserves is likely to be costly and a trade‐off might exist with life‐history traits. Previous studies on starvation resistance and life‐history traits of D. melanogaster have mainly focused on quantification of total body lipids, instead of separating ovarian lipids from total body lipids. In the present study, we have quantified absolute ovarian lipids (OL) versus absolute body lipids excluding ovarian lipids (BL) and examined associations with fecundity as well as starvation resistance in two latitudinal populations (8.34 vs. 32.43°N) of Dmelanogaster. Firstly, we observed a trade‐off between BL and OL that matched the trade‐off of starvation resistance, longevity versus fecundity and development time in latitudinal populations of D. melanogaster. Southern populations had higher starvation resistance, more BL and lesser OL, whereas northern populations had enhanced fecundity, OL and lesser BL. Secondly, within population, starvation resistance also correlated with BL, and fecundity with OL. However, there was no correlation between starvation resistance and OL. Moreover, there was utilization of BL and nonutilization of OL under starvation stress. Therefore, resources invested for fecundity in the form of OL were independent of evolved starvation resistance in D. melanogaster. Our results suggest that a common pool of energy storage compounds (lipids) are allocated differentially between fecundity and starvation resistance and are consistent with Y‐model of resource allocation.  相似文献   

12.
We investigated eight populations of Drosophila immigrans from low to high montane localities (600–2202 m) for altitudinal variations in abdominal melanization and fitness-related traits (desiccation resistance, copulation duration, and fecundity). On the basis of common garden experiments, persistence between-population differences at 21°C suggests that observed variations in fitness-related traits have a genetic basis. Parent–offspring regression analyses showed higher heritability (h2= 0.77) for melanization patterns on all the abdominal tergites. All the traits showed significantly higher repeatability across generations. Under colder and drier environments in dispersed montane localities, abdominal melanization and desiccation resistance significantly increased (1.5–1.9 fold) along altitude. Thus, there are correlated effects of abdominal melanization on desiccation resistance. Genetic correlations, based on family means, were significantly high between abdominal melanization and other fitness traits. Furthermore, darker flies along increasing altitude resulted in a 35–40% increase in copulation duration as well as fecundity. There are significantly positive correlations of abdominal melanization with copulation duration as well as fecundity on the basis of within- as well as between-population variations. Such observations are in agreement with the thermal budget hypothesis. Present data suggest that changes in body melanization impact fitness-related traits in montane populations of Drosophila immigrans .  相似文献   

13.
We investigated the role of cuticular lipids, body melanisation and body size in conferring contrasting levels of desiccation resistance in latitudinal populations of Drosophila melanogaster and Drosophila ananassae on the Indian subcontinent. Contrary to the well known role of cuticular lipids in water proofing in diverse insect taxa, there is lack of geographical variations in the amount of cuticular lipids per fly in both the species. In D. ananassae, quite low levels of body melanisation are correlated with lower desiccation resistance. By contrast, increased levels of desiccation resistance are correlated with quite high melanisation in D. melanogaster. Thus, species specific cuticular melanisation patterns are significantly correlated with varying levels of desiccation resistance within as well as between populations and across species. Role of body melanisation in desiccation resistance is further supported by the fact that assorted dark and light flies differ significantly in cuticular water loss, hemolymph and dehydration tolerance. However, similar patterns of body size variation do not account for contrasting levels of desiccation resistance in these two Drosophila species. Climatic selection is evidenced by multiple regression analysis with seasonal amplitude of thermal and humidity changes (Tcv and RHcv) along latitude on the Indian subcontinent. Finally, the contrasting levels of species specific distribution patterns are negatively correlated with RHcv of sites of origin of populations i.e. a steeper negative slope for D. ananassae corresponds with its desiccation sensitivity as compared with D. melanogaster. Thus, evolutionary changes in body melanisation impact desiccation resistance potential as well as distribution patterns of these two Drosophila species on the Indian subcontinent.  相似文献   

14.
《Fly》2013,7(3):111-117
We investigated population divergence in body melanisation in wild samples of Drosophila melanogaster across an elevational gradient (512 - 2202m) in the Western Himalayas. Wild populations are characterized by higher phenotypic variability as compared with laboratory populations. Significant differences in elevational slope values for three posterior abdominal segments (5th, 6th and 7th) in wild versus laboratory populations suggest plastic effects. However, elevational slope values do not differ for the three anterior abdominal segments (2nd, 3rd and 4th). Thus, elevational changes in melanisation include genetic as well as plastic effects. Fitness consequences of within population variability were analyzed on the basis of assorted darker and lighter flies from two highland as well as from two lowland localities. There is lack of correlation of melanisation with body size as well as ovariole number in assorted darker and lighter flies. For each population, darker flies showed higher desiccation resistance, lower rate of water loss, longer copulation duration and greater fecundity as compared with lighter flies. Phenotypic variations in body melanisation can be interpreted in relation with seasonal changes in temperature as well as humidity (Tcv and RHcv) of the sites of origin of populations. Thus, elevational changes in body melanisation may represent genetic response to selection pressures imposed by colder and drier climatic conditions in the Western Himalayas.  相似文献   

15.
The long‐term survival of species and populations depends on their ability to adjust phenotypic values to environmental conditions. In particular, the capability of dealing with environmental stress to buffer detrimental effects on fitness is considered to be of pivotal importance. Resistance traits are readily modulated by a wide range of environmental factors. In the present study, Drosophila melanogaster Meigen is used to investigate plastic responses to temperature and photoperiod in stress resistance traits. The results reveal that stress resistance traits (cold, heat, starvation and desiccation resistance) are affected by the factors temperature and sex predominantly. Cooler temperatures compared with warmer temperatures increase cold tolerance, desiccation and starvation resistance, whereas they reduce heat tolerance. Except for heat resistance, females are more stress‐resistant than males. Stress resistance traits are also affected by photoperiod. Shorter photoperiods decrease cold tolerance, whereas longer photoperiods enhance desiccation resistance. Overall, thermal effects are pervasive throughout all measured resistance traits, whereas photoperiodic effects are of limited importance in the directly developing (i.e. nondiapausing) flies used here, suggesting that pronounced photoperiodic effects on stress resistance traits may be largely limited to, and triggered by, diapause‐inducing effects.  相似文献   

16.
Abstract Low desiccation resistance of Drosophila ananassae reflects its rarity outside the humid tropics. However, the ability of this sensitive species to evolve under seasonally varying subtropical areas is largely unknown. D. ananassae flies are mostly lighter during the rainy season but darker and lighter flies occur in the autumn season in northern India. We tested the hypothesis whether seasonally varying alternative body color phenotypes of D. ananassae vary in their levels of environmental stress tolerances and mating behavior. Thus, we investigated D. ananassae flies collected during rainy and autumn seasons for changes in body melanization and their genetic basis, desiccation‐related traits, cold tolerance and mating propensity. On the basis of genetic crosses, we found total body color dimorphism consistent with a single gene model in both sexes of D. ananassae. A significant increase in the frequency of the dark morph was observed during the drier autumn season, and body color phenotypes showed significant deviations from Hardy‐Weinberg equilibrium, which suggests climatic selection plays a role. Resistance to desiccation as well as cold stress were two‐ to three‐fold higher in the dark body color strain as compared with the light strain. On the basis of no‐choice mating experiments, we observed significantly higher assortative matings between dark morphs under desiccation or cold stress, and between light morphs under hot or higher humidity conditions. To the best of our knowledge, this is the first report on the ecological significance of seasonally varying total body color dimorphism in a tropical species, D. ananassae.  相似文献   

17.
Survival to low relative humidity is a complex adaptation, and many repeated instances of evolution to desiccation have been observed among Drosophila populations and species. One general mechanism for desiccation resistance is Cuticular Hydrocarbon (CHC) melting point. We performed the first Quantitative Trait Locus (QTL) map of population level genetic variation in desiccation resistance in D. melanogaster. Using a panel of Recombinant Inbred Lines (RILs) derived from a single natural population, we mapped QTL in both sexes throughout the genome. We found that in both sexes, CHCs correlated strongly with desiccation resistance. At most desiccation resistance loci there was a significant association between CHCs and desiccation resistance of the sort predicted from clinal patterns of CHC variation and biochemical properties of lipids. This association was much stronger in females than males, perhaps because of greater overall abundance of CHCs in females, or due to correlations between CHCs used for waterproofing and sexual signalling in males. CHC evolution may be a common mechanism for desiccation resistance in D. melanogaster. It will be interesting to compare patterns of CHC variation and desiccation resistance in species which adapt to desiccation, and rainforest restricted species which cannot.  相似文献   

18.
Abstract.  Low temperature and desiccation stress are thought to be mechanistically similar in insects, and several studies indicate that there is a degree of cross-tolerance between them, such that increased cold tolerance results in greater desiccation tolerance and vice versa . This assertion is tested at an evolutionary scale by examining basal cold tolerance, rapid cold-hardening (RCH) and chill coma recovery in replicate populations of Drosophila melanogaster selected for desiccation resistance (with controls for both selection and concomitant starvation) for over 50 generations. All of the populations display a RCH response, and there is no effect of selection regime on RCH or basal cold tolerance, although there are differences in basal cold tolerance between sampling dates, apparently related to inter-individual variation in development time. Flies selected for desiccation tolerance recover from chill coma slightly, but significantly, faster than control and starvation-control flies. These findings provide little support for cross-tolerance between survival of near-lethal cold and desiccation stress in D. melanogaster .  相似文献   

19.
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic β cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.Key words: Drosophila melanogaster, insulin-producing cells (IPCs), drosophila insulin-like peptides (DILPs), type 2 diabetes, oral glucose tolerance test (OGTT), insulin sensitivity, energy metabolism, life span  相似文献   

20.

Background

The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult.

Principal Findings

Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet.

Conclusion

Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号