首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined whether predator interference could prevent effective conservation biological control of Delia spp. flies, important pests of cole crops, by an assemblage of carabid and staphylinid beetles. In laboratory feeding trials we found that the smaller (<1 cm) beetle species common at our site readily ate dipteran eggs, while the most common large carabid species, Pterostichus melanarius, rarely did. However, P. melanarius did eat several of the smaller beetle species. We conducted two field experiments where we manipulated immigration rates of the ground predator guild and then measured predation on fly eggs. Predation rates were consistently higher in cages where predators were added at ambient densities, compared to cages where ground predators were removed. However, in the second field experiment, when we quadrupled predator immigration rates neither beetle activity-density nor predation rate increased. High immigration rate plots had a higher proportion of P. melanarius in the predator community, compared to plots with beetles added at ambient densities, suggesting that P. melanarius was reducing activity-densities of the smaller beetles, perhaps through intraguild predation. Thus, tactics to improve the biological control of Delia spp. by conserving generalist predators, such as providing in- or extra-field refuges, could be thwarted if the primary predators of fly eggs, small carabids and staphylinids, are the targets of intraguild predation by also-conserved larger predators.  相似文献   

2.
Epigeic polyphagous predatory beetles can regulate the pest abundance. The range of population densities at which regulation is possible is specific to each predator-prey subsystem and can be determined experimentally. In the subsystem of ground and rove beetles (Carabidae and Staphylinidae) and the cabbage maggot Delia brassicae Bouché and in that of Carabus hampei Küst. and the Colorado potato beetle Leptinotarsa decemlineata Say, regulation occurs at low pest densities: in the former subsystem, at oviposition rates not exceeding 3 eggs per day per plant, and in the latter, at the pest density varying from 1 to 36 eggs per potato plant. Within these density ranges, both the absolute and relative number of pest individuals eliminated by the predatory beetles increase. The maximum fraction of the pests destroyed by these entomophages is observed at medium prey population densities, which corresponds to functional response of type III (Holling, 1965).  相似文献   

3.
The carabid beetle Pterostichus melanarius is a major natural enemy of pests, such as aphids and slugs in agricultural systems. Earthworms are a dominant non‐pest component of the diet of P. melanarius which help sustain the beetles during periods when the pest population is low or absent. In this study we wanted to test whether this predator exercises prey choice among different earthworm species or ecological groups. High levels of genetic diversity within morphological species of earthworm necessitated the development of primers that were specific not just to species but lineages and sub‐lineages within species as well. Gut samples from beetles were analysed using multiplex‐PCR and fluorescent‐labelled primers. Calibratory feeding trials were undertaken to calculate median detection times for prey DNA following ingestion. Extensive testing demonstrated that the primers were species‐specific, that detection periods were negatively related to amplicon size and that meal size had a highly significant effect on detection periods. Monte Carlo simulations showed that, in general, worms were being predated in proportion to their densities in the field with little evidence of prey choice, other than probable avoidance of the larger, deep‐living species. There was no evidence that epigeic species were being taken preferentially in comparison with endogeic species. There was also no evidence that defensive secretions by Allolobophora chlorotica reduced predation pressure on this species by P. melanarius. We concluded that any management system that increases earthworm densities generally, regardless of component species, is likely to be optimal for increasing numbers of this beneficial beetle predator.  相似文献   

4.
Lang A 《Oecologia》2003,134(1):144-153
Arable land typically harbours communities of polyphagous invertebrate natural enemies, among them numerous soil-surface dwelling predators such as ground beetles (Carabidae) and spiders (Lycosidae, Linyphiidae). Numbers of these predators were experimentally manipulated in a winter wheat field in order to study the predation impact of a generalist predator assemblage on herbivorous insects, the possible interferences among the predators concerned, and subsequent effects on wheat plant parameters. Removing ground beetles doubled numbers of Lycosidae indicative of intraguild interference between these two predator groups. Aphid densities were highest in carabid removal plots implying a substantial predation impact of ground beetles on the pest population. The predation impact of ground beetles was strongest earlier and disappeared later in the season. In mid-season, at intermediate aphid densities, the combined impact of carabid beetles and spiders appeared to be responsible for the reduction in aphid abundance. This result was probably due to a biomass effect rather than to a synergistic effect of the predator community. Thysanoptera decreased when spiders were removed (perhaps because spiders were preying on a predator of thrips), while Cicadellidae and Delphacidae showed no effect at all. The rise of aphid numbers in carabid removal plots corresponded to an increase in protein content of the wheat grains, while other plant parameters such as plant numbers and grain mass were not affected. In conclusion, this study provided field evidence for intraguild interference among generalist ground predators in arable land. Despite this interference the polyphagous predator community was able to depress numbers of aphids in winter wheat, a result cascading down to plant quality parameters.  相似文献   

5.
Aphid suppression by natural enemies in mulched cereals   总被引:2,自引:0,他引:2  
Large populations of natural enemies are the basis for natural pest control. Effects of mulch on predator–prey interactions in arable fields are poorly known, despite its potential to enhance ground‐dwelling predators and thereby reduce pest infestations. We studied the densities of predators and parasitoids, and their impact on cereal aphids in the presence and absence of mulch. Released populations of the bird cherry aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), and two naturally occurring aphid species, were monitored under experimentally reduced densities of: (i) ground‐dwelling predators, (ii) flying predators and parasitoids, and (iii) with straw mulch. The three treatments were applied in a 2 × 2 × 2 factorial design in a field of spring wheat (Triticum aestivum L.). The exclusion of ground‐dwelling predators increased aphid populations by 55% in June and 40% in July, respectively. Mulched plots had 25% lower aphid densities in June. This was presumably due to enhanced densities of spiders (Araneida) in mulched plots. The exclusion of flying predators and parasitoids led to 94% higher aphid populations in late July (109 vs. 56 individuals per 100 shoots), irrespective of mulch or ground predator manipulation. This was attributed to the larvae of gall midges Aphidoletes cf. aphidimyza (Rondani) (Diptera: Cecidomyiidae) and hoverflies (Diptera: Syrphidae). The results indicate that a scarcity of predators and a bare soil surface renders crops more susceptible to arthropod pests. Farming schemes should aim at enhancing both ground‐dwelling and flying predators for elevated levels of natural pest control.  相似文献   

6.
Molecular gut-content analysis allows determination of pest predation by field-collected predators. Ground beetles (Coleoptera: Carabidae) common in lowbush blueberries may consume blueberry spanworm, Itame argillacearia (Packard) (Lepidoptera: Geometridae), and blueberry flea beetle, Altica sylvia Malloch (Coleoptera: Chrysomelidae), providing pest suppression. Using newly developed pest specific primers, laboratory feeding trials showed that the median detection time (MDT) for blueberry spanworm in the largest beetle, Carabus nemoralis O.F. Müller, was 3.7 h, whereas Poecilus lucublandus (Say) and Pterostichus mutus (Say) had MDTs between 27.1 and 31.6 h for both pests. At a field-site with high pest abundances, the probability of detecting blueberry spanworm and blueberry flea beetle DNA was greater in P. lucublandus, 26 and 39 % respectively, than in P.mutus, 8 and 20 % respectively. Only 0 and 1 % of P. lucublandus and P. mutus, respectively, tested positive for blueberry spanworm DNA at a second site with low abundance. At the first site, the probability of detecting pest DNA in both ground beetle species was positively related to pest density. Higher pest DNA detection rates and captures of ground beetles corresponded to field areas where significant pest reductions occurred from late May to early June. Conservation of predatory carabid beetles could lead to valuable biological control in lowbush blueberries.  相似文献   

7.
Habitat manipulation in agroecosystems can influence predator–prey interactions. In this study, we collected foliar predators from field potato plots with different mulch treatments and assayed them for DNA of the target prey, Leptinotarsa decemlineata (Say), using species-specific primers. Concurrently, L. decemlineata larval abundance and plant damage were recorded from the same plots. Predator species abundance and diversity were not influenced by habitat manipulation, while prey density was highest in plots without mulch. Gut-content analysis revealed that the highest incidence of predators positive for L. decemlineata DNA was in plots without mulch, where target prey abundance was highest. Therefore, the lower prey abundance in mulched plots was not due to predation. The most abundant species in the predator assemblage was Coleomegilla maculata, which had the lowest proportion of L. decemlineata DNA in the gut. Podisus maculiventris, Perillus bioculatus, and Lebia grandis were less abundant but had a higher incidence of target prey DNA in the gut. DNA detectability half-lives were used to adjust for inter-specific variation in DNA digestive rates of the four predator species. Using this information to adjust actual number of positives for prey DNA, we compared proportions positive for L. decemlineata and found that P. maculiventris is the most effective predator species in the complex.  相似文献   

8.
Earthworms provide a major potential source of alternative food for polyphagous predators, such as carabid beetles, that are natural enemies of slugs, aphids and other agricultural pests. Non-pest prey may foster larger numbers of natural enemies, which then help to control pests, or alternatively may help to divert the predators away from pest control. An earthworm-specific monoclonal antibody was developed to study carabid-earthworm interactions in the field and assess the role of earthworms as alternative prey. The antibody could identify as little at 7 ng of earthworm protein in an ELISA, and could detect earthworm remains in the foregut of the carabid beetle Pterostichus melanarius for 64 h after consumption. Thirty-six per cent of field-collected beetles contained earthworm remains. Quantities of earthworm proteins in the beetle foreguts were negatively related to total foregut biomass, suggesting that earthworm consumption increased as total prey availability declined. There was also a negative relationship between foregut biomass and beetle numbers, but both quantities and concentrations of earthworm proteins in beetle foreguts were positively related to beetle numbers. This suggests that as beetle activity-density increased, total prey availability declined, or, as prey availability declined, beetles spent more time searching. In these circumstances, beetles fed to a greater extent on earthworms, an acceptable but nonpreferred food item. Earthworms may, therefore, provide an ideal alternative prey for P. melanarius, helping to sustain it when pest numbers are low but allowing it to perform a 'lying-in-wait' strategy, ready to switch back to feeding on pests when they become available.  相似文献   

9.
We conducted a field experiment to determine the extent to which interference among generalist predators limits their effectiveness as biocontrol agents. We manipulated immigration of a guild of actively hunting generalist ground predators, carabid beetles and lycosid spiders, by intercepting them as they attempted to enter fenced 50-m2 vegetable gardens. Immigration was blocked, allowed at the mean rate measured at our field site, or doubled. Altered immigration rates were maintained through a spring garden of cabbage, bean, eggplant, and cucumber, followed by a summer garden of squash. We monitored densities of carabids and lycosids to discover if altering their immigration rate changed their densities in the plots. We also measured densities of other predators on the ground and in plant foliage, pest numbers, and vegetable yields. Doubling the immigration rate of carabids and lycosids approximately doubled the densities of carabids inside the plots, but did not increase lycosid densities. Increasing the rate of immigration of carabids and lycosids depressed densities of nonlycosid ground spiders. In the spring gardens, manipulation of carabid and lycosid immigration did not influence numbers of predators or herbivores in the foliage and did not affect vegetable productivity. In contrast, in the summer gardens, foliage-dwelling predators were lower, pest densities were marginally lower, and squash productivity was higher in the carabid and lycosid immigration plots compared to the no-immigration treatment. Doubling carabid and lycosid immigration rate never increased the magnitude of their effects on other predators, pests, or plant productivity. Predator interference limited lycosid establishment, reduced densities of other predator taxa, and apparently prevented a doubling of carabid densities from having an increased impact on pest numbers. Nevertheless, despite widespread effects of predator interference, allowing immigration of lycosids and carabids increased squash productivity.  相似文献   

10.
The cereal leaf beetle (CLB), Oulema melanopus (L.) (Coleoptera: Chrysomelidae), is an invasive pest in North America recently reported in the Canadian Prairies. We performed a series of laboratory assays to identify potential predators and a field study to quantify predation of CLB eggs. In no-choice Petri dish assays, ground beetles (Carabidae), rove beetles (Staphylinidae), and several common lady beetle species (Coccinellidae) were the most consistent predators of eggs and larvae. Nabis spp. (Hemiptera: Nabidae) and wolf spiders (Araneae: Lycosidae) consumed many larvae, but did not consume eggs. Hippodamia spp., Coccinella septempunctata (L.) (Coleoptera: Coccinellidae), and Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) also fed on CLB eggs on potted plants when an alternative food source was available, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). In our field study, we found an average of 24.5% of sentinel eggs disappeared over a 24?h period, likely due to predation. Our results suggest that generalist predators can play an important role in the biological control of CLB, and warrant further study.  相似文献   

11.
Predation has been invoked as a factor synchronizing the population oscillations of sympatric prey species, either because predators kill prey unselectively (the Shared Predation Hypothesis; hereafter SPH), or because predators switch to alternative prey after a density decline in their main prey (the Alternative Prey Hypothesis; APH). A basic assumption of the APH is that the impact of predators on alternative prey depends more on the density of main prey than on the predator/alternative prey ratio. Both SPH and APH assume that the impact of predators on alternative prey is at least periodically strong enough to depress prey populations. To examine these assumptions, we utilized data from replicated field experiments in large areas where we reduced the breeding densities of avian predators during three years and the numbers of least weasels (Mustela nivalis) in two years when vole populations declined. In addition, we reduced the breeding densities of avian predators in two years when vole populations were high. The reduction of least weasels increased the abundance of their alternative prey, small birds breeding on the ground, but did not affect the abundance of common shrews (Sorex araneus). In years when vole populations declined, the reduction of avian predators increased the abundance of their alternative prey, common shrews and small birds. Therefore, vole‐eating predators do at least periodically depress the abundance of their alternative prey. At high vole densities, the reduction of avian predators did not increase the abundance of common shrews, although the ratio of avian predators to alternative prey was similar to years when vole populations declined, which supported APH. In contrast, the abundance of small birds increased after the reduction of avian predators also at high vole densities, which supported SPH. The manipulations had no obvious effect on the number of game birds, which are only occasionally killed by these small‐sized predators. We conclude that in communities where most predators are small or specialize on a single prey type, the synchronizing impact of predation is restricted to a few similar‐sized species.  相似文献   

12.
Increasing structural complexity within crop fields can provide a way to manipulate pest abundance and biological control in agroecosystems. Here, we examine the effect of cover crop mulches in cabbage on the structure and function of an insect food web, investigating the role of cover crop species, structure, and volatile cues on important interactions. We focused on the imported cabbageworm (Pieris rapae L., Lepidoptera: Pieridae), and three of its natural enemies, the spined soldier bug (Podisus maculiventris (Say), Hemiptera: Pentatomidae), the convergent lady beetle (Hippodamia convergens (Guerin), Coleoptera: Coccinellidae), and the parasitoid, Cotesia rubecula Marshall (Hymenoptera: Braconidae). We measured the abundance of these insects in a field experiment and conducted a natural enemy exclusion cage study to determine the level of biological control of the imported cabbageworm in the field. Our field experiments indicated that cover crop species, but not structure, influenced insect abundance, with significantly more imported cabbageworm and C. rubecula in rye cover crop mulch plots compared to vetch mulch or bare soil plots. In the Y-tube assays we found some evidence that the increased parasitoid abundance did not result in increased parasitism because of interference of the mulch with short-range host finding odor cues. The natural abundance of the two predators was not different among our field plots with different cover crop treatments. Mortality and parasitism of sentinel imported cabbageworm larvae was not different in field cages among the different cover crop mulch treatments, but there was a significant difference among cage types indicating that small natural enemies play an important role in the biological control of this cabbage pest.  相似文献   

13.
14.
1 Spiders and carabid beetles are abundant generalist predators that prey upon insect pests of soybean. A field experiment was conducted to determine the impact of spiders and carabids on soybean yield. Prior to planting, three 7 × 7 m plots were fenced in order to reduce spider and carabid immigration. Carabids that emerged within the plots were not removed, but spiders that ballooned into these predator‐reduction plots or that entered by climbing the fence were removed by pitfall trapping and searching the vegetation. Three unmanipulated, unfenced plots served as the control treatment. 2 Densities of spiders on soybean vegetation, and activity‐densities of spiders and carabids determined by pitfall trapping, were c. 75% lower in the spider‐carabid reduction treatment than in control plots. Despite clear differences between treatments in numbers and activity of these major generalist predators, the weight of soybeans harvested did not differ between control and spider‐carabid reduction plots. 3 Paralleling the absence of an effect of predator reduction on soybean yield was the absence of any significant difference between treatments in densities of whiteflies (Aleyrodidae), leafhoppers (Cicadellidae), thrips (Thysanoptera), Lepidoptera larvae and herbivorous Coleoptera. 4 Our experiment provides no evidence that spiders and carabid beetles at ambient densities affect soybean yield. Low populations of pest species or low predation pressure on soybean pests by spiders and carabids at the ambient densities of this experiment could be responsible for this result.  相似文献   

15.
The activity and density of generalist predators, such as carabid beetles, rove beetles and spiders, may increase in response to: (1) increased availability of prey from the belowground subsystem and/or (2) enhanced complexity of aboveground vegetation. Organic farming practices support decomposer populations and enhance habitat complexity due to an increased weed density. A response by generalist predators to such below‐ or aboveground changes could affect predation rates on herbivores in the aboveground food web. We tested this hypothesis in a replicated field experiment conducted in a winter wheat field, where increased predator activity could lead to improved control of herbivorous pests. In a crossed design, we increased and lowered densities of decomposer prey, and manipulated vegetation complexity using artificial plants in order to examine the effect of structural complexity in isolation from effects of plant‐attracted additional prey. Isotomid Collembola exhibited lowest activity‐densities (AD) in plots treated with soil insecticide and had gradually increasing AD in untreated plots and plots receiving detrital subsidies. Carabid beetles and cursorial spiders did not respond to increased availability of isotomid prey, and they unexpectedly displayed higher AD in the structurally less‐complex plots. Aphid density mirrored the positive response of isotomids to detrital subsidies, suggesting that aphids benefited from reduced predation due to predators switching to abundant prey in the decomposer subsystem. The absence of a numerical response by surface‐active predators apparently strengthened this indirect effect of isotomids on aphids. Our results suggest that indirect predator‐mediated prey‐prey interactions can reduce beneficial effects of detrital subsidies on pest suppression. We further demonstrated that generalist predators may not per se benefit from structural complexity. Both results document the challenges associated with management practices that support generalist predators, as these measures may not necessarily improve herbivore suppression.  相似文献   

16.
The spatial distribution of polyphagous predators may often reflect the integration of aggregative responses to local densities of multiple species of prey, and as such may have consequences for the indirect linkages among the prey sharing these predators. In a factorial field experiment in which we manipulated local prey densities within a field of alfalfa in Utah (USA), we tested whether aphidophagous ladybirds would aggregate not only in response to their primary aphid prey, but also in response to an abundant alternative prey, the alfalfa weevil (Hypera postica [Gyllenhal]). Native North American ladybirds (primarily Hippodamia convergens Guerin and H. quinquesignata quinquesignata [Kirby]) responded only to spatial variation in aphid density. In contrast, the introduced ladybird, Coccinella septempunctata L., aggregated also at local concentrations of the weevil late in the experiment when weevil density was high and aphid density was relatively low throughout all experimental plots. The results support the hypothesis that C. septempunctata is more responsive than are native ladybirds to the availability of alternative prey in alfalfa, which may account in part for the displacement of native ladybirds from alfalfa by the introduced species as aphid numbers have declined. The differing responses of the native and introduced ladybirds to spatial patterns of the alternative prey underscore the importance of extending the study of predator aggregation to understand better how polyphagous predators distribute themselves in response to spatial patterns of multiple species of potential prey.  相似文献   

17.
《Biological Control》2010,52(3):499-506
Natural enemies that control pests usually allow farmers to avoid, or reduce, the use of pesticides. However, modern farming practices, that maximize yields, are resulting in loss of biodiversity, particularly prey diversity. Does this matter? Pests continue to thrive, and without alternative prey the predators should, perforce, concentrate their attentions upon the pests.We showed that a diverse diet significantly enhances predator fecundity and survival. Experiments were conducted using common generalist predators found in arable fields in Europe, the carabid beetle Pterostichus melanarius (Coleoptera: Carabidae) and the linyphiid spider Erigone atra (Araneae: Linyphiidae). We tested the hypothesis that mixed species diets were optimal, compared with restricted diets, with respect to parameters such as predator weights, egg weights, numbers of eggs laid, egg development times, egg hatching rates and predator survival. In carabids, an exclusive earthworm diet was as good as mixed diets containing earthworms for egg production and hatching, but less good than such mixed diets for increase in beetle mass and sustained egg laying. For spiders, aphids alone (Sitobion avenae) or with the Collembola Folsomia candida, drastically reduced survival. Aphids plus the Collembola Isotoma anglicana improved survival but only aphids with a mixed Collembola diet maximized numbers of hatching eggs.Predators offered only pests (slugs or aphids) had lowest growth rates and fecundity. We therefore demonstrated that conservation of a diversity of prey species within farmland, allowing predators to exploit a diverse diet, is essential if predators are to continue to thrive in crops and regulate agricultural pests.  相似文献   

18.
Nonindigenous species are increasingly recognized as altering marine and estuarine communities, causing significant changes in abundance and distribution of native species. Such effects are of particular concern to coastal fisheries. We experimentally determined the effect of the nonindigenous European green crab, Carcinus maenas, upon the stepped venerid clam, Katelysia scalarina, the basis for a fledgling clam fishery in Tasmania, Australia. First, we observed a trend of decreased juvenile (<13-mm shell length or SL) abundance of K. scalarina at sites with C. maenas relative to those without this invasive predator. Additionally, relative predation intensity on these juveniles was significantly higher in invaded areas. To better understand the dynamics of predation by this invader, we conducted a number of manipulative experiments. In cage experiments testing per capita predation rates, we found that: (1) of the various sizes of C. maenas, large C. maenas were the most significant predators; (2) the smallest size class of K. scalarina tested (6-12-mm SL) was preferred by C. maenas; (3) C. maenas had much higher predation rates than any native predator tested; and (4) while the native shore crab, Paragrapsus gaimardii, was found to have a constant predation rate over an eightfold range of densities of juvenile K. scalarina (16-128 individuals·m−2), C. maenas significantly increased its per capita predation with increasing prey density. Notably, in open field plots at a site where C. maenas was abundant, predation was constant over the range of tested prey densities. We predict, therefore, that the invasion of C. maenas will have significant negative consequences for the Tasmanian K. scalarina fishery.  相似文献   

19.
M. D. Moran  L. E. Hurd 《Oecologia》1994,98(3-4):269-273
We investigated the short-term response of an arthropod assemblage to elevated generalist predator densities by introducing Chinese mantids (Tenodera sinensis) to field plots in a replicated, controlled experiment. Abundances of carnivorous arthropods were reduced by mantids to a greater extent than herbivores, and cursorial spiders emigrated from treatment plots in greater numbers than from controls. Initially, this emigration consisted only of small spiders that were demonstrated in the laboratory to be prey for mantids. Thus, the initial response of an arthropod assemblage to increased predators, densities was increased interactions among predators, which caused decline in predator population densities in a shorter time than competition for prey would require. Predator avoidance behavior must be considered together with intraguild predation and competition when interpreting the outcome of predator manipulations. Shortterm experiments may be more valuable than longer term studies in detecting this effect.  相似文献   

20.
Control of blueberry maggot, Rhagoletis mendax Curran, typically is achieved with insecticides targeting adult flies before females oviposit in ripening fruit. Management strategies targeting other life stages have received less attention. We tested effects of compost or pine needle mulches on emergence of blueberry maggot flies under laboratory and field conditions. Few flies emerged from pupae that were buried under 20 cm of pine needles in all experiments, but burial in 20 cm of compost did not always result in low fly emergence. Burial of pupae in 5 cm of compost or pine needles did not reduce fly emergence compared with 1 cm in soil. Low emergence with increased mulch depth appeared to be primarily because of failure of flies to ascend to the surface after they exited puparia. Low emergence also was associated with high moisture levels causing rotten, discolored pupae, particularly in the laboratory in compost. No flies emerged from pupae buried in 1 cm of pine needles in the field. In this case no flies exited puparia, likely because high temperatures (>30°C) at the surface killed pupae. Thus, mulch application under highbush blueberries (Vaccinium corymbosum L.) after maggots drop from berries can reduce emergence success of flies from buried pupae, but the level of control will depend on mulch depth and may vary with rainfall and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号