首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(1):46-53
Antibody drug conjugates (ADCs) are an emerging class of targeted therapeutics with the potential to improve therapeutic index over traditional chemotherapy. Drugs and linkers have been the current focus of ADC development, in addition to antibody and target selection. Recently, however, the importance of conjugate homogeneity has been realized. The current methods for drug attachment lead to a heterogeneous mixture, and some populations of that mixture have poor in vivo performance. New methods for site-specific drug attachment lead to more homogeneous conjugates and allow control of the site of drug attachment. These subtle improvements can have profound effects on in vivo efficacy and therapeutic index. This review examines current methods for site-specific drug conjugation to antibodies, and compares in vivo results with their non-specifically conjugated counterparts. The apparent improvement in pharmacokinetics and the reduced off target toxicity warrant further development of this site-specific modification approach for future ADC development.  相似文献   

2.
Antibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed. We report here the first multi-level characterization of a site-specific ADC by state-of-the-art mass spectrometry (MS) methods, including native MS and its hyphenation to ion mobility (IM-MS). We demonstrate the versatility of native MS methodologies for site-specific ADC analysis, with the unique ability to provide several critical quality attributes within one single run, along with a direct snapshot of ADC homogeneity/heterogeneity without extensive data interpretation. The capabilities of native IM-MS to directly access site-specific ADC conformational information are also highlighted. Finally, the potential of these techniques for assessing an ADC's heterogeneity/homogeneity is illustrated by comparing the analytical characterization of a site-specific DAR4 ADC to that of first-generation ADCs. Altogether, our results highlight the compatibility, versatility, and benefits of native MS approaches for the analytical characterization of all types of ADCs, including site-specific conjugates. Thus, we envision integrating native MS and IM-MS approaches, even in their latest state-of-the-art forms, into workflows that benchmark bioconjugation strategies.  相似文献   

3.
Antibody therapeutics have revolutionized the treatment of cancer over the past two decades. Antibodies that specifically bind tumor surface antigens can be effective therapeutics; however, many unmodified antibodies lack therapeutic activity. These antibodies can instead be applied successfully as guided missiles to deliver potent cytotoxic drugs in the form of antibody drug conjugates (ADCs). The success of ADCs is dependent on four factors—target antigen, antibody, linker, and payload. The field has made great progress in these areas, marked by the recent approval by the US Food and Drug Administration of two ADCs, brentuximab vedotin (Adcetris®) and ado-trastuzumab emtansine (Kadcyla®). However, the therapeutic window for many ADCs that are currently in pre-clinical or clinical development remains narrow and further improvements may be required to enhance the therapeutic potential of these ADCs. Production of ADCs is an area where improvement is needed because current methods yield heterogeneous mixtures that may include 0–8 drug species per antibody molecule. Site-specific conjugation has been recently shown to eliminate heterogeneity, improve conjugate stability, and increase the therapeutic window. Here, we review and describe various site-specific conjugation strategies that are currently used for the production of ADCs, including use of engineered cysteine residues, unnatural amino acids, and enzymatic conjugation through glycotransferases and transglutaminases. In addition, we also summarize differences among these methods and highlight critical considerations when building next-generation ADC therapeutics.  相似文献   

4.
Antibody drug conjugates (ADCs) have emerged as a viable option in targeted delivery of highly potent cytotoxic drugs in treatment of solid tumors. At the time of writing, only two ADCs have received regulatory approval with >40 others in clinical development. The first generation ADCs suffered from a lack of specificity in amino acid site-conjugations, yielding statistically heterogeneous stoichiometric ratios of drug molecules per antibody molecule. For the second generation ADCs, however, site-specific amino acid conjugation using enzymatic ligation, introduction of unnatural amino acids, and site-specific protein engineering hold promise to alleviate some of the current technical limitations. The rapid progress in technology platforms and antibody engineering has introduced novel linkers, site-specific conjugation chemistry, and new payload candidates that could possibly be exploited in the context of ADCs. A search using the Clinical Trial Database registry (www.clinicaltrials.gov), using the keyword ‘antibody drug conjugate’, yielded ~270 hits. The main focus of this article is to present a brief overview of the recent developments and current challenges related to ADC development.  相似文献   

5.
Antibody-drug conjugates (ADCs), produced through the chemical linkage of a potent small molecule cytotoxin (drug) to a monoclonal antibody, have more complex and heterogeneous structures than the corresponding antibodies. This review describes the analytical methods that have been used in their physicochemical characterization. The selection of the most appropriate methods for a specific ADC is heavily dependent on the properties of the linker, the drug and the choice of attachment sites (lysines, inter-chain cysteines, Fc glycans). Improvements in analytical techniques such as protein mass spectrometry and capillary electrophoresis have significantly increased the quality of information that can be obtained for use in product and process characterization and for routine lot release and stability testing.Key words: antibody drug conjugates, physicochemical characterization, analytical methods, auristatins, maytansines, biophysical characterization, drug distribution, drug loading, drug to antibody ratio  相似文献   

6.
We have previously shown that antibody-drug conjugates (ADCs) consisting of cAC10 (anti-CD30) linked to the antimitotic agent monomethylauristatin E (MMAE) lead to potent in vitro and in vivo activities against antigen positive tumor models. MMAF is a new antimitotic auristatin derivative with a charged C-terminal phenylalanine residue that attenuates its cytotoxic activity compared to its uncharged counterpart, MMAE, most likely due to impaired intracellular access. In vitro cytotoxicity studies indicated that mAb-maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-MMAF (mAb-L1-MMAF) conjugates were >2200-fold more potent than free MMAF on a large panel of CD30 positive hematologic cell lines. As with cAC10-L1-MMAE, the corresponding MMAF ADC induced cures and regressions of established xenograft tumors at well tolerated doses. To further optimize the ADC, several new linkers were generated in which various components within the L1 linker were either altered or deleted. One of the most promising linkers contained a noncleavable maleimidocaproyl (L4) spacer between the drug and the mAb. cAC10-L4-MMAF was approximately as potent in vitro as cAC10-L1-MMAF against a large panel of cell lines and was equally potent in vivo. Importantly, cAC10-L4-MMAF was tolerated at >3 times the MTD of cAC10-L1-MMAF. LCMS studies indicated that drug released from cAC10-L4-MMAF was the cysteine-L4-MMAF adduct, which likely arises from mAb degradation within the lysosomes of target cells. This new linker technology appears to be ideally suited for drugs that are both relatively cell-impermeable and tolerant of substitution with amino acids. Thus, alterations of the linker have pronounced impacts on toxicity and lead to new ADCs with greatly improved therapeutic indices.  相似文献   

7.
Antibody–drug conjugates (ADCs) are designed to facilitate the targeted delivery of cytotoxic drugs to improve their tumor fighting effects and minimize systemic toxicity. However, efficacy and safety can potentially be compromised due to the release of conjugated drugs from the ADC with time while in circulation, resulting in changes in the drug-to-antibody ratio (DAR). Current understanding of this process is limited because existing methods such as immunoassays fail to distinguish ADCs with different DARs. Here we demonstrate a novel method with bead-based affinity capture and capillary liquid chromatography–mass spectrometry to allow direct measurement of drug release by quantifying DAR distributions of the ADC in plasma/serum. This method successfully identified individual intact conjugated antibody species produced due to drug loss from ADCs (e.g., an engineered site-specific anti-MUC16 THIOMAB–drug conjugate) and measured the corresponding DAR distributions in vitro and in vivo. Information obtained can provide insights into the mechanisms involved in drug loss and help to optimize ADC therapeutics. Other potential applications of the method may include characterization of posttranslational modifications, protein adducts, and immunogenicity.  相似文献   

8.
Antibody drug conjugates (ADCs) are monoclonal antibodies designed to deliver a cytotoxic drug selectively to antigen expressing cells. Several components of an ADC including the selection of the antibody, the linker, the cytotoxic drug payload and the site of attachment used to attach the drug to the antibody are critical to the activity and development of the ADC.The cytotoxic drugs or payloads used to make ADCs are typically conjugated to the antibody through cysteine or lysine residues. This results in ADCs that have a heterogeneous number of drugs per antibody. The number of drugs per antibody commonly referred to as the drug to antibody ratio (DAR), can vary between 0 and 8 drugs for a IgG1 antibody. Antibodies with 0 drugs are ineffective and compete with the ADC for binding to the antigen expressing cells. Antibodies with 8 drugs per antibody have reduced in vivo stability, which may contribute to non target related toxicities.In these studies we incorporated a non-natural amino acid, para acetyl phenylalanine, at two unique sites within an antibody against Her2/neu. We covalently attached a cytotoxic drug to these sites to form an ADC which contains two drugs per antibody.We report the results from the first direct preclinical comparison of a site specific non-natural amino acid anti-Her2 ADC and a cysteine conjugated anti-Her2 ADC. We report that the site specific non-natural amino acid anti-Her2 ADCs have superior in vitro serum stability and preclinical toxicology profile in rats as compared to the cysteine conjugated anti-Her2 ADCs. We also demonstrate that the site specific non-natural amino acid anti-Her2 ADCs maintain their in vitro potency and in vivo efficacy against Her2 expressing human tumor cell lines. Our data suggests that site specific non-natural amino acid ADCs may have a superior therapeutic window than cysteine conjugated ADCs.  相似文献   

9.
《MABS-AUSTIN》2013,5(2):161-172
Antibody-drug conjugates (ADCs), formed through the chemical linkage of a potent small molecule cytotoxin (drug) to a monoclonal antibody, have more complex and heterogeneous structures than the corresponding antibodies. This review describes the analytical methods that have been used in their physicochemical characterization. The selection of the most appropriate methods for a specific ADC is heavily dependent on the properties of the linker, the drug, and the choice of attachment sites (lysines, inter-chain cysteines, Fc glycans). Improvements in analytical techniques such as protein mass spectrometry and capillary electrophoresis have significantly increased the quality of information that can be obtained for use in product and process characterization, and for routine lot release and stability testing.  相似文献   

10.
Auristatins are highly potent antimitotic agents that have received considerable attention because of their activities when targeted to tumor cells in the form of antibody-drug conjugates (ADCs). Our lead agent, SGN-35, consists of the cAC10 antibody linked to the N-terminal amino acid of monomethylauristatin E (MMAE) via a valine-citrulline p-aminobenzylcarbamate (val-cit-PABC) linker that is cleaved by intracellular proteases such as cathepsin B. More recently, we developed an auristatin F (AF) derivative monomethylauristatin F (MMAF), which unlike MMAE contains the amino acid phenylalanine at the C-terminal position. Because of the negatively charged C-terminal residue, the potency of AF and MMAF is impaired. However, their ability to kill target cells is greatly enhanced through facilitated cellular uptake by internalizing mAbs. Here, we explore the effects of linker technology on AF-based ADC potency, activity, and tolerability by generating a diverse set of dipeptide linkers between the C-terminal residue and the mAb carrier. The resulting ADCs differed widely in activity, with some having significantly improved therapeutic indices compared to the original mAb-Val-Cit-PABC-MMAF conjugate. The therapeutic index was increased yet further by generating dipeptide-based ADCs utilizing new auristatins with methionine or tryptophan as the C-terminal drug residue. These results demonstrate that manipulation of the C-terminal peptide sequence used to attach auristatins to the mAb carrier can lead to highly potent and specific conjugates with greatly improved therapeutic windows.  相似文献   

11.
Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ~45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.  相似文献   

12.
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ~20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future.  相似文献   

13.
抗体偶联药物(antibody drug conjugate,ADC)通常由抗体通过链接体与毒素小分子偶联而成,同时具备抗体的高靶向性和小分子药物的高活性,使之作为一种新兴的靶向治疗手段,在肿瘤治疗领域展现出了优秀的疗效和潜力,成为药物研发领域的新热点。目前全球已有14款ADC药物获批上市,处于临床研究阶段的ADC候选药物分子超过140个。为了进一步提高ADC药物的安全性和有效性,近年来涌现出了各种新颖的技术。本文对ADC药物分子的关键元素,包括抗体、链接体、毒素小分子以及偶联技术等方面的最新研究进展进行总结,并讨论其优缺点。期望这些讨论能够帮助增加对ADC药物研究和开发更加系统的理解,为研发出更加高效和安全的ADC药物带来一些思考。  相似文献   

14.
抗体偶联药物(antibody-drug conjugates,ADC)因其良好的靶向性及抗癌活性目前已成为抗肿瘤抗体药物研发的新热点和重要趋势,受到越来越多的关注。ADC药物由单克隆抗体、高效应的细胞毒性物质以及连接臂三部分组成,它将抗体的靶向性与细胞毒性药物的抗肿瘤作用相结合,可以降低细胞毒性抗肿瘤药物的不良反应,提高肿瘤治疗的选择性,还能更好地应对靶向单抗的耐药性问题。与传统单抗药物相比,因其结构复杂,ADC药物质量属性分析方法的建立具有更大的难度和特殊性。对抗体偶联药物的研发现状、质量属性分析方法和挑战以及质量控制要点进行了简要介绍,为ADC药物的研究和质量控制提供参考。  相似文献   

15.
Fabricating drug particles for therapeutic delivery and imaging presents important challenges in the design of the particle surfaces. Drug nanoparticle surfaces are currently functionalized with site-specific targeting ligands, biocompatible polymers, or fluorophore-polymer conjugates for specific imaging. However, if these functionalizations were to be synthesized on the drug carrier in localized, nanoscale regions on the particle surface, new schemes of drug delivery could be realized. Here we describe the use of our particle lithography technique that enables the synthesis of individual colloidal carrier assemblies that can be imaged and targeted to integrin-expressing cells. We show localized adhesion specificity for cells expressing the target integrin followed by receptor-mediated endocytosis. With the addition of localized delivery by adding drug nanoparticles to a specific region on the particle surface, our colloidal carrier assemblies have the potential to target, deliver therapeutic agents to, sense, and image diseased endothelium.  相似文献   

16.
Nanoparticle (NP)-based targeted drug delivery involves cell-specific targeting followed by a subsequent therapeutic action from the therapeutic carried by the NP system. NPs conjugated with methotrexate (MTX), a potent inhibitor of dihydrofolate reductase (DHFR) localized in cytosol, have been under investigation as a delivery system to target cancer cells to enhance the therapeutic index of methotrexate, which is otherwise non-selectively cytotoxic. Despite improved therapeutic activity from MTX-conjugated NPs in vitro and in vivo, the therapeutic action of these conjugates following cellular entry is poorly understood; in particular it is unclear whether the therapeutic activity requires release of the MTX. This study investigates whether MTX must be released from a nanoparticle in order to achieve the therapeutic activity. We report herein light-controlled release of methotrexate from a dendrimer-based conjugate and provide evidence suggesting that MTX still attached to the nanoconjugate system is fully able to inhibit the activity of its enzyme target and the growth of cancer cells.  相似文献   

17.
Conjugation processes and stability studies associated with the production and shelf life of antibody-drug conjugates (ADCs) can result in free (non-conjugated) drug species. These free drug species can increase the risk to patients and reduce the efficacy of the ADC. Despite stringent purification steps, trace levels of free drug species may be present in formulated ADCs, reducing the therapeutic window. The reduction of sample preparation steps through the incorporation of multidimensional techniques has afforded analysts more efficient methods to assess trace drug species. Multidimensional methods coupling size-exclusion and reversed phase liquid chromatography with ultra-violet detection (SEC-RPLC/UV) have been reported, but offer limited sensitivity and can limit method optimization. The current study addresses these challenges with a multidimensional method that is specific, sensitive, and enables method control in both dimensions via coupling of an on-line solid phase extraction column to RPLC with mass spectral detection (SPE-RPLC/MS). The proposed method was evaluated using an antibody-fluorophore conjugate (AFC) as an ADC surrogate to brentuximab vedotin and its associated parent maleimide-val-cit-DSEA payload and the derived N-acetylcysteine adduct formed during the conjugation process. Assay sensitivity was found to be 2 orders more sensitive using MS detection in comparison to UV-based detection with a nominal limit of quantitation of 0.30 ng/mL (1.5 pg on-column). Free-drug species were present in an unadulterated ADC surrogate sample at concentrations below 7 ng/mL, levels not detectable by UV alone. The proposed SPE-RPLC/MS method provides a high degree of specificity and sensitivity in the assessment of trace free drug species and offers improved control over each dimension, enabling straightforward integration into existing or novel workflows.  相似文献   

18.
Over the past couple of decades, antibody–drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics.  相似文献   

19.
Five RGD peptide–camptothecin (CPT) conjugates were designed and synthesized with the purpose to improve the therapeutic index of this antitumoral drug family. New RGD cyclopeptides were selected on the basis of their high affinity to αv integrin receptors overexpressed by tumor cells and their metabolic stability. The conjugates can be divided in two groups: in the first the peptide was attached to the drug through an amide bond, in the second through a hydrazone bond. The main difference between the two spacers lies in their acid stability. Affinity to the receptors was maintained for all conjugates and their internalization into tumor cells was demonstrated. The first group conjugates showed lower in vitro and in vivo activity than the parent drug, probably due to the excessive stability of the amide bond, even inside the tumor cells. Conversely, the hydrazone conjugates exhibited in vitro tumor cell inhibition similar to the parent drug, indicating high conversion in the culture medium and/or inside the cells, but their poor solubility hampered in vivo experiments. On the basis of these results, information was acquired for additional development of derivatives with different linkers and better solubility for in vivo evaluation.  相似文献   

20.
The linker component of antibody-drug conjugates (ADC) is a key feature in developing optimized therapeutic agents that are highly active at well tolerated doses. For maximal intratumoral drug delivery, linkers are required that are highly stable in the systemic circulation, yet allow for efficient drug release at the target site. In this respect, amide bond-based technologies constitute a technological advancement, since the linker half-lives in circulation ( t 1/2 approximately 7 days) are much longer than earlier generation linkers that break down within 1-2 days. The amide linkers, some of which contain peptides, are appended to the mAb carriers through thioether/maleimide adducts. Here, we describe that use of a bromoacetamidecaproyl (bac) in place of the maleimidocaproyl (mc) increases the plasma stability of resulting thioether ADCs. One such ADC, 1F6-C4v2-bac-MMAF, which is directed against the CD70 antigen on lymphomas and renal cell carcinoma, was prepared containing a bac thioether spacer between the drug (MMAF) and the mAb carrier (1F6-C4v2). There was no measurable systemic drug release from this ADC for 2 weeks postadministration in mice. In order to assess the impact of improving linker stability beyond mc containing ADCs, a series of mc and bac-linked 1F6-MMAF conjugates were compared for tolerability, intratumoral drug delivery, and therapeutic efficacy in nude mice with renal cell carcinoma xenografts. There were no statistically significant efficacy differences between sets of mc and bac containing ADCs, although the bac linker technology led to 25% higher intratumoral drug exposure over a 7 day period compared to the corresponding mc linker. The mechanism of drug release from maleimide-adducts likely involves a retro-Michael reaction that takes place in plasma, based on in vitro studies demonstrating that some of the released drug-maleimide derivative became covalently bound to cysteine-34 of serum albumin. In summary, the data indicate that new linkers can be obtained with improved in vivo stability by replacing the maleimide with an acetamide, but the resulting ADCs had similar tolerability and activity profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号