首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
SDF-1/CXCR4的研究进展   总被引:4,自引:0,他引:4  
基质细胞衍生因子-1(stromal cell—derived factorl,SDF-1)是α趋化因子家族的—个新成员,其受体CX—CR4广泛地表达在许多组织和器官上。SDF—1/CXCR4与造血干/祖细胞的动员和归巢密切相关,并且是白血病细胞迁移、播散的重要因子。近来研究发现,SDF—1/CXCR4参与调节造血干/祖细胞的增殖及其白血病细胞抗凋亡过程;能够通过免疫调节发挥抗感染、抗肿瘤作用。因此,对SDF—1/CXCR4的深入研究将有助于阐述造血机制和肿瘤细胞生长机制,为临床移植和抗肿瘤治疗提供新的途径。  相似文献   

2.
多项研究发现CXCR4在各种类型的癌症中高表达,然而尚不清楚CXCR4在食管癌细胞生长和转移中的作用。本研究检测了CXCR4在食管癌组织和细胞系(TE-1)中的表达,并通过转染CXCR4-短发夹RNA(CXCR4-sh RNA)慢病毒来敲低TE-1细胞中CXCR4的表达。应用PI3K/AKT抑制剂LY294002(50μmol/L)处理TE-1细胞12 h来考察AKT信号在食管癌细胞生长和转移中的作用;应用蛋白质印迹分析检测AKT和Rho家族蛋白(RhoA,Rac-1和Cdc42)的表达;应用CCK-8实验检测细胞增殖;Transwell实验检测细胞侵袭;对雄性BALB/c-nu/nu裸鼠皮下注射转染CXCR4-shRNA的TE-1细胞建立肿瘤异种移植模型。研究显示,CXCR4在食管癌组织中的表达水平明显高于癌旁组织,并且与TNM分期和淋巴结转移有关。CXCR4在人食管鳞状细胞癌细胞系(TE-1)中的表达水平明显高于人正常食管上皮细胞系(human normal esophageal epithelial cell line,HEEC)。敲低CXCR4能抑制食管鳞状细胞癌细胞的增殖和侵袭能力,并抑制肿瘤异种移植裸鼠的肿瘤形成。敲低CXCR4抑制了AKT的磷酸化及RhoA、Rac-1和Cdc42的表达。此外,PI3K/AKT抑制剂LY294002处理显著降低了TE-1细胞中AKT的磷酸化,并降低了RhoA、Rac-1和Cdc42的表达。本研究表明,CXCR4在食管癌患者中上调,与不良预后相关。下调CXCR4的表达可在体内和体外抑制食管癌肿瘤的生长和转移。下调CXCR4可通过抑制AKT信号的激活来抑制Rho家族粘附/侵袭相关蛋白的表达,从而抑制肿瘤转移。  相似文献   

3.
基质细胞衍生因子-1及其受体CXCR4与肿瘤的生物学行为   总被引:2,自引:0,他引:2  
基质细胞衍生因子-1(stromal cell derived factor-1, SDF-1)是由基质细胞持续产生并分布广泛的趋化因子,CXCR4则为SDF-1的高度特异性受体.最近研究显示,SDF-1/CXCR4生物轴除了调节肿瘤的侵袭转移能力外,还与多种肿瘤的生物学行为关系密切.本文主要介绍SDF-1/CXCR4的结构与功能、SDF-1/CXCR4与肿痛生物学行为的关系,探讨以SDF-1/CXCR4生物轴为靶点的肿瘤治疗前景.  相似文献   

4.
C-X-C趋化因子受体4(CXCR4)是乳腺癌细胞运动的关键调节因子。CXCR4的功能性表达与乳腺癌的恶性进展密切相关。酪氨酸硫酸化转移酶1(tyrosylprotein sulfotransferase 1,TPST1)是CXCR4蛋白翻译后酪氨酸硫酸化修饰的一个关键酶。本研究将探索TPST1在CXCR4调节乳腺癌细胞侵袭过程中的作用机制。利用定量PCR,免疫组织化学和蛋白质免疫印迹等试验技术检测乳腺癌组织和细胞系中CXCR4和TPST1的mRNA和蛋白表达水平。RNA干扰,趋化试验和侵袭试验用于检测TPST1对于CXCR4诱导的乳腺癌细胞侵袭的影响。研究发现CXCR4蛋白在乳腺癌转移淋巴结组织中呈高表达(P=0. 0016)。CXCR4在乳腺癌转移淋巴结组织中的高表达与肿瘤浸润深度密切相关(P=0. 026)。TPST1与CXCR4蛋白表达在乳腺癌原发组织和配对转移淋巴结组织中均呈显著正相关(P=0. 009; P=0. 006)。TPST1在高度恶性乳腺癌MDA-MB-231细胞中呈高表达,在低度恶性乳腺癌MCF-7细胞中弱表达,而两者CXCR4表达基本相同。小RNA干扰降低TPST1的表达后,下调了乳腺癌MDA-MB-231细胞对于CXCR4配体即基质细胞衍生因子1α(stromal cell-derived factor 1 alpha,SDF-1α)的运动反应性,进而降低CXCR4诱导的MDA-MB-231细胞迁移和侵袭能力。综上,在CXCR4诱导的乳腺癌细胞侵袭过程中,TPST1表达对于CXCR4功能性活化至关重要,TPST1可能作为潜在的抗CXCR4药物治疗乳腺癌恶性进展的联合靶点。  相似文献   

5.
6.
CXC趋化因子受体4(CXCR4)是最主要的趋化因子受体之一,在多种类型细胞中均有表达,包括淋巴细胞、造血干细胞、内皮细胞和肿瘤细胞。CXCR4与其配体——基质细胞衍生因子1(SDF-1)(也称CXCL12)结合,能介导多种与细胞趋化、细胞存活或增殖相关信号传导通路。CXCR4与SDF-1轴涉及肿瘤的恶性演进、血管生成、转移和存活。因此,阻断CXCR4与SDF-1轴及下游信号通路成为相关治疗的分子靶标。  相似文献   

7.
基质细胞衍生因子-1(Stromal cell derived factor-1,SDF-1)是CXC趋化因子家族的重要成员,系统命名为CXCL12,能与它的唯一受体CXC趋化因子受体-4(CXC chemokine receptor-4,CXCR4)形成CXCL12-CXCR4生物学轴,CXCL12-CXCR4生物学轴在肿瘤生长、侵袭、转移过程中发生重要作用。到目前为止,已发现CXCL12-CXCR4在卵巢癌、胰腺癌、肝癌等多种肿瘤组织中表达。然而,国内目前还没有关于CXCL12-CXCR4与卵巢癌关系的相关综述,本文将从趋化因子CXCL12及其受体CXCR4,CXCL12/CXCR4轴与卵巢癌细胞系实验研究,CXCL12-CXCR4轴与卵巢癌的临床研究,CXCL12/CXCR4与卵巢癌预后,CXCL12/CXCR4与卵巢癌治疗展望等五个方面对CXCL12-CXCR4生物轴与卵巢癌的关系,及其在卵巢癌治疗中的应用展开综述。  相似文献   

8.
尽管近年来胃癌的诊断与治疗取得了长足发展,但胃癌致死率仍高居全球各类肿瘤的第三位。炎性趋化因子家族包含约50位成员,参与增殖、分化、迁移等多项细胞功能的调节。炎性趋化因子受体CXCR4及其配体基质细胞衍生因子1(SDF-1)在多种肿瘤中表达。SDF-1在胃癌中高表达,SDF-1/CXCR4轴促进胃癌细胞增长、增殖与转移,在胃癌发生发展过程中发挥重要作用。本文着重论述SDF-1/CXCR4轴在胃癌发生发展中的研究进展。  相似文献   

9.
CXCL12及受体CXCR4在胆管癌中的表达及其临床意义   总被引:3,自引:1,他引:2  
目的:探讨趋化因子CXCLl2及其受体CXCR4在胆管癌中的表达及与临床病理特征、预后的关系.方法:采用免疫组化SP法检测10例正常胆管、61例胆管癌(19例肝门部胆管癌、42例胆总管中下段癌)组织中CXCL12和CXCR4蛋白的表达.结果:正常胆管中无CXCL12和CXCR4蛋白的表达,胆管癌的CXCL12和CXCR4蛋白的表达分别为88%和53%,有转移的胆管癌中CXCR4蛋白的表达为94%,显著高于无转移组.相关性分析显示CXCR4蛋白的表达与肿瘤是否转移有关,与肿瘤复发时间及存活时间有关.结论:CXCR4可以作为判断胆管癌恶性程度高低及预后的指标之一.  相似文献   

10.
吕亮亮  李桥川  赖永榕 《蛇志》2010,22(2):130-132
造血干细胞移植(HSCT)已成为治疗血液系统疾病、实体瘤、代谢性和严重自身免疫性等疾病主要方法之一。GCSF介导的动员是一个复杂的、多步骤的过程,而基质细胞衍生因子(SDF-1)及其受体CXCR4在造血干细胞的的动员及归巢中发挥着重要的作用。近年来.以SDF01/CXCR4为动员靶点研制出的CXCR4拮抗剂——AMD3100,经临床实验证明它是一种安全有效的新的动员剂。  相似文献   

11.
Interaction of ligand-receptor systems between stromal-cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) is closely involved in the organ specificity of cancer metastasis. We hypothesized that SDF-1-CXCR4 ligand-receptor system plays an important role in prostate cancer metastasis. To test this hypothesis, expression level of SDF-1 and CXCR4 was analyzed in prostate cancer (PC) cell lines (LNCaP, PC3, and DU145) and normal prostate epithelial cell line (PrEC). We also performed migration assay and MTT assay to investigate the chemotactic effect and growth-promoting effect of SDF-1 on DU145 and PC3 cells, respectively. Furthermore, we performed immunohistochemical analysis of CXCR4 expression in tissues from 35 cases of human prostate cancer. CXCR4 expression was detected in all three prostate cancer cell lines, but not in PrECs. SDF-1 significantly enhanced the migration of PC3 and DU145 cells in a dose-dependent manner, and anti-CXCR4 antibody inhibited this chemotactic effect. However, SDF-1 itself did not significantly stimulate the cell growth rate of prostate cancer cell lines. Positive CXCR4 protein was found in 20 out of 35 clinical PC samples (57.1%). Three patients with lung metastasis showed definitely positive CXCR4 immunostaining. Logistic regression analysis revealed that positive expression of CXCR4 protein was an independent and superior predictor for bone metastasis to Gleason sum (P < 0.05). Furthermore, among PC patients with PSA greater than 20 ng/mL, the positive rate of CXCR4 protein was significantly higher in patients with bone metastasis than in those with no bone metastasis (P = 0.017). These findings suggest that the interaction between SDF-1 and CXCR4 ligand-receptor system is involved in the process of PC metastasis by the activation of cancer cell migration. This is the first report to investigate the role of interaction of ligand-receptor systems between SDF-1 and CXCR4 in prostate cancer metastasis.  相似文献   

12.
The human CXC chemokine receptor 4 (CXCR4) is a receptor for the chemokine stromal cell-derived factor (SDF-1alpha) and a co-receptor for the entry of specific strains of human immunodeficiency virus type I (HIV-1). CXCR4 is also recognized by an antagonistic chemokine, the viral macrophage inflammatory protein II (vMIP-II) encoded by human herpesvirus type VIII. SDF-1alpha or vMIP-II binding to CXCR4 can inhibit HIV-1 entry via this co-receptor. An approach combining protein structural modeling and site-directed mutagenesis was used to probe the structure-function relationship of CXCR4, and interactions with its ligands SDF-1alpha and vMIP-II and HIV-1 envelope protein gp120. Hypothetical three-dimensional structures were proposed by molecular modeling studies of the CXCR4.SDF-1alpha complex, which rationalize extensive biological information on the role of CXCR4 in its interactions with HIV-1 envelope protein gp120. With site-directed mutagenesis, we have identified that the amino acid residues Asp (D20A) and Tyr (Y21A) in the N-terminal domain and the residue Glu (E268A) in extracellular loop 3 (ECL3) are involved in ligand binding, whereas the mutation Y190A in extracellular loop 2 (ECL2) impairs the signaling mediated by SDF-1alpha. As an HIV-1 co-receptor, we found that the N-terminal domain, ECL2, and ECL3 of CXCR4 are involved in HIV-1 entry. These structural and mutational studies provide valuable information regarding the structural basis for CXCR4 activity in chemokine binding and HIV-1 viral entry, and could guide the design of novel targeted inhibitors.  相似文献   

13.
Renal cancer is a relatively common malignant carcinoma that metastasizes to bone. The chemokine stromal derived factor-1 (SDF-1) and its corresponding receptor CXCR4 have been shown to regulate organ-specific metastasis in other cancer types. Based on this observation, we predicted that the expressions of SDF-1 and CXCR4 play a role in renal carcinoma metastasis to bone. To investigate the expressions of SDF-1 and CXCR4, and to assess the correlation between SDF-1 and CXCR4 immunoreactivity in bone metastasis of renal carcinoma, we collected 10 in situ renal carcinoma samples and 30 bone metastasis samples. We analyzed SDF-1 and CXCR4 expression with immunohistochemical analysis on paraffin-embedded sections. Compared with primary renal carcinomas, the SDF-1 expression in bone metastases was significantly higher [80% (24/30) vs. 30% (3/10), P = 0.006]; the expression of CXCR4 was also higher [83.3% (25/30) vs. 40% (4/10), P = 0.014]. Pearson correlation analysis supports a positive correlation between SDF-1 and CXCR4 in bone metastasis of renal carcinoma. In addition, RT-PCR demonstrated that, as compared with in situ renal carcinoma tissues, SDF-1 expression was predominant in the bone metastasis samples (P = 0.001), while CXCR4 was overexpressed in the bone metastasis tissues (P = 0.028). Western blot analysis confirmed these trends. Our data suggest that the expression of SDF-1/CXCR4 is high in bone metastases and over-expression of SDF-1/CXCR4 may play important roles in the bone metastasis of renal carcinoma.  相似文献   

14.
We examined the role of chemokine signaling on the lymph node metastasis of oral squamous cell carcinoma (SCC) using lymph node metastatic (HNt and B88) and nonmetastatic oral SCC cells. Of 13 kinds of chemokine receptors examined, only CXCR4 expression was up-regulated in HNt and B88 cells. CXCR4 ligand, stromal-cell-derived factor-1alpha (SDF-1alpha; CXCL12), induced characteristic calcium fluxes and chemotaxis only in CXCR4-expressing cells. CXCR4 expression in metastatic cancer tissue was significantly higher than that in nonmetastatic cancer tissue or normal gingiva. Although SDF-1alpha was undetectable in either oral SCC or normal epithelial cells, submandibular lymph nodes expressed the SDF-1alpha protein, mainly in the stromal cells, but occasionally in metastatic cancer cells. The conditioned medium from lymphatic stromal cells promoted the chemotaxis of B88 cells, which was blocked by the CXCR4 neutralization. SDF-1alpha rapidly activated extracellular signal-regulated kinase (ERK)1/2 and Akt/protein kinase B (PKB), and their synthetic inhibitors attenuated the chemotaxis by SDF-1alpha. SDF-1alpha also activated Src family kinases (SFKs), and its inhibitor PP1 diminished the SDF-1alpha-induced chemotaxis and activation of both ERK1/2 and Akt/PKB. These results indicate that SDF-1/CXCR4 signaling may be involved in the establishment of lymph node metastasis in oral SCC via activation of both ERK1/2 and Akt/PKB induced by SFKs.  相似文献   

15.
CXCR4 is a G-coupled receptor for the stromal cell-derived factor (SDF-1) chemokine, and a CD4-associated human immunodeficiency virus type 1 (HIV-1) coreceptor. These functions were studied in a panel of CXCR4 mutants bearing deletions in the NH(2)-terminal extracellular domain (NT) or substitutions in the NT, the extracellular loops (ECL), or the transmembrane domains (TMs). The coreceptor activity of CXCR4 was markedly impaired by mutations of two Tyr residues in NT (Y7A/Y12A) or at a single Asp residue in ECL2 (D193A), ECL3 (D262A), or TMII (D97N). These acidic residues could engage electrostatical interactions with basic residues of the HIV-1 envelope protein gp120, known to contribute to the selectivity for CXCR4. The ability of CXCR4 mutants to bind SDF-1 and mediate cell signal was consistent with the two-site model of chemokine-receptor interaction. Site I involved in SDF-1 binding but not signaling was located in NT with particular importance of Glu(14) and/or Glu(15) and Tyr(21). Residues required for both SDF-1 binding and signaling, and thus probably part of site II, were identified in ECL2 (Asp(187)), TMII (Asp(97)), and TMVII (Glu(288)). The first residues () of NT also seem required for SDF-1 binding and signaling. A deletion in the third intracellular loop abolished signaling, probably by disrupting the coupling with G proteins. The identification of CXCR4 residues involved in the interaction with both SDF-1 and HIV-1 may account for the signaling activity of gp120 and has implications for the development of antiviral compounds.  相似文献   

16.
Colorectal cancer (CRC) is the most commonly diagnosed cancer worldwide, and over 50% of patients will develop hepatic metastasis during the course of their disease. CXCR4 and its ligand, stromal cell-derived factor 1α (SDF-1α)/chemokine (C-X-C motif) ligand 12 (CXCL12) have been revealed as regulatory molecules involved in the spreading and progression of a variety of tumors. Here we have shown that lipopolysaccharides (LPS) promoted the migratory capacity of colon cancer cells in vivo and in vitro, which correlated with the activation of SDF-1α/CXCR4 axis and epithelial-mesenchymal transition (EMT) occurrence. Additionally, we found that LPS-induced CXCR4 expression and EMT through NF-κB signaling pathway activation. And inhibition of NF-κB pathway, which recovered the epithelial phenotype and attenuated CXCR4 expression, inhibited cell migratory capacity. Clinically, high levels of CXCR4 always correlated with metastasis and poor prognosis of CRC patients. In conclusion, LPS participate in the whole process of hepatic metastasis of CRC, not only causing liver damage resulting in the production of SDF-1α, but also enhancing the invasive potential of CRC cells by promoting CXCR4 expression and EMT occurrence, which would contribute to the enhancement of cell migration and invasion.  相似文献   

17.
18.
Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1alpha treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1alpha induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important "cross-talk" between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.  相似文献   

19.
Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have been found to be tightly correlated with the progression of prostate cancer (PC). In this study, we investigated the effects of an SDF-1α/CXCR4 inhibitor, AMD3100, on cell progression and metastasis potential of human PC cells. Human PC cell lines (LNCaP, PC3, and DU145) were cultured to detect SDF-1α/CXCR4, which showed higher SDF-1α and CXCR4 expression than the normal human prostate epithelial cell line, RWPE-1. AMD3100 was confirmed to be an inhibitor of SDF-1α, and to detect the effect of SDF-1α/CXCR4 inhibition on PC, PC cells were treated with AMD3100 or/and CXCR4 siRNA. The results suggested that inhibition of the SDF-1α/CXCR4 pathway could promote the E-cadherin level but inhibit the levels of invasion and migration of vimentin, N-cadherin and α5β1 integrin. Finally, tumor formation in nude mice was conducted, and the cell experiment results were verfied. These data show that AMD3100 suppresses epithelial–mesenchymal transition and migration of PC cells by inhibiting the SDF-1α/CXCR4 signaling pathway, which provides a clinical target in the treatment of PC.  相似文献   

20.
Pancreatic cancer is highly invasive and is currently the fourth leading cause of cancer death worldwide. CXC chemokine receptor-4 (CXCR4) is a G protein-coupled receptor for CXC chemokine ligand 12/stromal cell-derived factor-1α (SDF-1α), a member of a large family of small, structurally related, heparin-binding chemokine proteins. SDF-1α/CXCR4 plays an important role in tumor growth, invasion, metastasis, and angiogenesis. SDF-1α and CXCR4 are upregulated in many tumors, including pancreatic cancer tissues, and preliminary data indicate that the SDF-1/CXCR4 axis plays an important role in tumor invasion. However, their precise role and the mechanism through which they function remain largely unknown. In this study, analysis of SDF-1α, CXCR4 and MMP-2 expression in pancreatic cancer and adjacent tissue samples from ten patients revealed that all three proteins are overexpressed in human pancreatic cancer. SDF-1α induced MMP-2 and MMP-9 upregulation in PANC-1 and SW-1990 cells, which was associated with increased pancreatic cancer cell proliferation and invasion. Furthermore, SDF-1α induced p38 phosphorylation and p38 inhibition reduced both the level of SDF-1α-stimulated MMP-2 expression and PANC-1 cell invasion. Overall, our results demonstrate that SDF-1α/CXCR4 upregulates MMP-2 expression and induces pancreatic cancer cell invasion in PANC-1 and SW-1990 cell lines by activating p38 MAPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号