首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Visual performance of the vertebrate eye requires large amounts of oxygen, and thus the retina is one of the highest oxygen-consuming tissues of the body. Here we show that neuroglobin, a neuron-specific respiratory protein distantly related to hemoglobin and myoglobin, is present at high amounts in the mouse retina (approximately 100 microm). The estimated concentration of neuroglobin in the retina is thus about 100-fold higher than in the brain and is in the same range as that of myoglobin in the muscle. Neuroglobin is expressed in all neurons of the retina but not in the retinal pigment epithelium. Neuroglobin mRNA was detected in the perikarya of the nuclear and ganglion layers of the neuronal retina, whereas the protein was present mainly in the plexiform layers and in the ellipsoid region of photoreceptor inner segment. The distribution of neuroglobin correlates with the subcellular localization of mitochondria and with the relative oxygen demands, as the plexiform layers and the inner segment consume most of the retinal oxygen. These findings suggest that neuroglobin supplies oxygen to the retina, similar to myoglobin in the myocardium and the skeletal muscle.  相似文献   

2.
The retina of the vertebrate eye is metabolically active and requires nutritive support. During the last 540 million years it has evolved into forms as complicated and nutritionally demanding as those found in avian or primate eyes. Diffusion from the choroid is generally able to supply the metabolic needs of thin retinae. However, when the thickness exceeds the limits of diffusion, structures are needed to supplement the vascular supply from the choroid. These supplemental nutritive devices include the choroidal gland, the falciform process and preretinal vascular plexus of fish, the conus papillaris of lizards, the pecten oculi of birds, the intraretinal vessels of mammals and a few novel systems that remain difficult to classify. These vascular systems are among the most variable features of the vertebrate eye. Here, we review classical and recent findings regarding such retinal nutrition systems, propose a three category classification for them based on histologic origins and speculate on the evolutionary forces which drove their development.  相似文献   

3.
How alpha and beta globin genes are organized and expressed in amniotes is of interest to researchers in a wide variety of fields. Data regarding this from avian species have been scarce. Using genomic and proteomic approaches, we present here our analysis of alpha and beta globins of zebra finch, a passerine bird. We show that finch alpha globin gene cluster has three genes (alphas 1–3), each orthologous to its chicken counterpart. Finch beta globin gene cluster has three genes (betas 1–3), with an additional pseudogene at the 3′ end. Finch beta3 is orthologous to chicken betaA, but the orthology of beta1 and beta2 to chicken counterparts is less clear. All six finch globins are confirmed to encode functional proteins. Gene expression in both globin gene clusters is regulated developmentally. Adult finch blood has a globin profile similar to that of adult chicken, with high levels of beta3 and alpha3 and moderate levels of alpha2. Finch embryonic primitive blood exhibits a globin profile very different from that of equivalent stage chick embryos, with all six globins expressed at high levels. Overall, our data provide a valuable resource for future studies in avian globin gene evolution and globin switching during erythropoietic development.  相似文献   

4.
The (hemo-)globins are among the best-investigated proteins in biomedical sciences. These small heme-proteins play an important role in oxygen supply, but may also have other functions. In addition to well known hemoglobin and myoglobin, six other vertebrate globin types have been identified in recent years: neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Analyses of the genome of the “living fossil” Latimeria chalumnae show that the coelacanth is the only known vertebrate that includes all eight globin types. Thus, Latimeria can also be considered as a “globin fossil”. Analyses of gene synteny and phylogenetic reconstructions allow us to trace the evolution and the functional changes of the vertebrate globin family. Neuroglobin and globin X diverged from the other globin types before the separation of Protostomia and Deuterostomia. The cytoglobins, which are unlikely to be involved in O2 supply, form the earliest globin branch within the jawed vertebrates (Gnathostomata), but do not group with the agnathan hemoglobins, as it has been proposed before. There is strong evidence from phylogenetic reconstructions and gene synteny that the eye-specific globin E and muscle-specific myoglobin constitute a common clade, suggesting a similar role in intracellular O2 supply. Latimeria possesses two α- and two β-hemoglobin chains, of which one α-chain emerged prior to the divergence of Actinopterygii and Sarcopterygii, but has been retained only in the coelacanth. Notably, the embryonic hemoglobin α-chains of Gnathostomata derive from a common ancestor, while the embryonic β-chains – with the exception of a more complex pattern in the coelacanth and amphibians – display a clade-specific evolution. Globin Y is associated with the hemoglobin gene cluster, but its phylogenetic position is not resolved. Our data show an early divergence of distinct globin types in the vertebrate evolution before the emergence of tetrapods. The subsequent loss of globins in certain taxa may be associated with changes in the oxygen-dependent metabolism. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

5.
We have isolated the chicken β-type globin genes from a library of chicken DNA-λ Charon 4A recombinant bacteriophage. There are four β-type genes within this segment of the genome; we believe this represents all of the β-type genes of the chicken. The recombinant λCβG1 contains the embryonic ?- and adult β-globin genes. The hatching βH and embryonic p-globin genes are found in the recombinant λCβG2. Although λCβG1 and λCβG2 do not physically overlap, we present evidence that all four genes are closely linked and transcribed from the same DNA strand. These experiments demonstrate that the chromosomal regions represented by λCβG1 and λCβG2 lie approximately 1.6 kb apart in the chicken genome. A third recombinant λCβG3 extends the genomic locus studied in the vicinity of the β-type globin genes to approximately 39 kb. The physical order of the chicken β-type globin genes within this segment of the chromosome is 5′ … ?-βH-β-? … 3′. This arrangement is unique among the vertebrate β-type globin gene clusters thus far examined, in that embryonic genes are located at the 5′ and 3′ ends of the cluster while the hatching and adult genes occupy central positions.  相似文献   

6.
Globins have been found in glial cells and neurons of invertebrates and vertebrates. The first nerve globin has been recognized in the nerve cord of the polychaete annelid Aphrodite aculeata in 1872. In some invertebrates, the nerve globin reaches a millimolar concentration which is likely sufficient to sustain the aerobic metabolism and thus the excitability of the nervous system. In 2000, the first vertebrate nerve globin, named neuroglobin (Ngb), has been identified in neuronal tissues of mice and humans. In contrast to invertebrate nerve globins, the concentration of Ngb, the prototype of vertebrate nerve globins, is low (μM), reaching a maximum of 100 μM in retina cells. Therefore, Ngb appears unlikely to act primarily as an O? buffer and to facilitate O? diffusion to the mitochondria. Indeed, Ngb has been hypothesized to catalyze the formation/decomposition of reactive nitrogen and/or oxygen species and to be part of intracellular signaling pathways enhancing cell survival. Here, we report that neuronal Ngb levels are strongly induced by the steroid hormone 17β-estradiol. Furthermore, Ngb participates to mechanisms involved in 17β-estradiol-induced protective effects against H?O? -induced neurotoxicity.  相似文献   

7.
The visual function of the vertebrate retina relies on sufficient supply with oxygen. Neuroglobin is a respiratory protein thought to play an essential role in oxygen homeostasis of neuronal cells. For further understanding of its function, we compared the distribution of neuroglobin and mitochondria in both vascular and avascular mammalian retinae. In the vascular retinae of mouse and rat, oxygen is supplied by the outer choroidal, deep retinal, and inner capillaries. We show that in this type of retina, mitochondria are concentrated in the inner segments of photoreceptor cells, the outer and the inner plexiform layers, and the ganglion cell layer. These are the same regions in which oxygen consumption takes place and in which neuroglobin is present at high levels. In the avascular retina of guinea pig the deep retinal and inner capillaries are absent. Therefore, only the inner segments of the photoreceptors adjacent to choroidal capillaries display an oxidative metabolism. We demonstrate that in the retina of guinea pigs both neuroglobin and mitochondria are restricted to this layer. Our results clearly demonstrate an association of neuroglobin and mitochondria, thus supporting the hypothesis that neuroglobin is a respiratory protein that supplies oxygen to the respiratory chain.  相似文献   

8.
9.
It is hypothesised that the visual performance of rainbow trout, Oncorhynchus mykiss, will be impaired by strenuous exercise as a result of metabolic stress (blood lactacidosis) that activates the Root effect and limits the oxygen-carrying capacity of blood flowing to the eye. The ability to resolve high contrast objects on a moving background, as a measure of visual performance, was quantified pre- and post-exercise using the optomotor response. Strenuous exercise induced a metabolic acidosis (8.0 mmol l(-1) blood lactate) and a significant red cell swelling response but no change in the optomotor response threshold (120 min of arc) was observed. Beta-adrenergic blockade (propranolol) abolished post-exercise red cell swelling but optomotor response thresholds were still maintained at 120 min of arc despite a significant blood lactate load (7.8 mmol l(-1)). The choroid rete mirabile of the trout is extremely well developed (rete area:eye area = 0.39) and may maintain visual performance by ensuring a relatively direct supply of oxygen to the central regions of the avascular retina. Exercised fish under beta-adrenergic blockade exhibited an enhanced optomotor response at 240-300 min of arc. Assuming that these responses reflect "tunnel vision", adrenergic regulation of red cell function may preserve a high ocular PO(2) gradient that satisfies the oxygen demand of peripheral retinal cells.  相似文献   

10.
Neuroglobin, mainly expressed in vertebrate brain and retina, is a recently identified member of the globin superfamily. Augmenting O(2) supply, neuroglobin promotes survival of neurons upon hypoxic injury, potentially limiting brain damage. In the absence of exogenous ligands, neuroglobin displays a hexacoordinated heme. O(2) and CO bind to the heme iron, displacing the endogenous HisE7 heme distal ligand. Hexacoordinated human neuroglobin displays a classical globin fold adapted to host the reversible bis-histidyl heme complex and an elongated protein matrix cavity, held to facilitate O(2) diffusion to the heme. The neuroglobin structure suggests that the classical globin fold is endowed with striking adaptability, indicating that hemoglobin and myoglobin are just two examples within a wide and functionally diversified protein homology superfamily.  相似文献   

11.
Hemicentins are recently described extracellular matrix (ECM) proteins with a single ortholog in C. elegans that assembles into discrete tracks constricting broad regions of epithelial cell contact into adhesive and flexible line-shaped junctions. There are two highly conserved hemicentin genes in most vertebrate species; however, nothing is known about the function or distribution of vertebrate hemicentins. To determine the distribution of vertebrate hemicentins, we used a polyclonal antibody to stain mouse tissue and showed that hemicentins are found in the pericellular ECM of epithelial cells in a number of tissues including embryonic trophectoderm and adult skin and tongue, in addition to the ECM of some, but not all, blood vessels. Hemicentins also assemble on multiple epithelia in the eye, including cornea, lens, and retina. The pericellular localization of vertebrate hemicentins on epithelia and other cell surfaces suggests that vertebrate hemicentins, like their nematode counterpart, are secreted ECM proteins likely to have a role in the architecture of adhesive and flexible cell junctions, particularly in tissues subject to significant amounts of mechanical stress.  相似文献   

12.
Chicken embryos have been proven to be an attractive vertebrate model for biomedical research. They have helped in making significant contributions for advancements in various fields like developmental biology, cancer research and cardiovascular studies. However, a non‐invasive, label‐free method of imaging live chicken embryo at high resolution still needs to be developed and optimized. In this work, we have shown the potential of photoacoustic tomography (PAT) for imaging live chicken embryos cultured in bioengineered eggshells. Laser pulses at wavelengths of 532 and 740 nm were used for attaining cross‐sectional images of chicken embryos at different developmental stages. Cross‐sections along different depths were imaged to gain knowledge of the relative depth of different vessels and organs. Due to high optical absorption of vasculature and embryonic eye, images with good optical contrast could be acquired using this method. We have thus reported a label‐free method of performing cross‐sectional imaging of chicken embryos at high resolution demonstrating the capacity of PAT as a promising tool for avian embryo imaging.  相似文献   

13.
Pattern of chick gene activation in chick erythrocyte heterokaryons   总被引:1,自引:1,他引:0       下载免费PDF全文
The reactivation of chicken erythrocyte nuclei in chick-mammalian heterokaryons resulted in the activation of chick globin gene expression. However, the level of chick globin synthesis was dependent on the mammalian parental cell type. The level of globin synthesis was high in chick erythrocyte-rat L6 myoblast heterokaryons but was 10-fold lower in chick erythrocyte-mouse A9 cell heterokaryons. Heterokaryons between chick erythrocytes and a hybrid cell line between L6 and A9 expressed chick globin at a level similar to that of A9 heterokaryons. Erythrocyte nuclei reactivated in murine NA neuroblastoma, 3T3, BHK and NRK cells, or in chicken fibroblasts expressed less than 5% chick globin compared with the chick erythrocyte-L6 myoblast heterokaryons. The amount of globin expressed in heterokaryons correlated with globin mRNA levels. Hemin increased beta globin synthesis two- to threefold in chick erythrocyte-NA neuroblastoma heterokaryons; however, total globin synthesis was still less than 10% that of L6 heterokaryons. Distinct from the variability in globin expression, chick erythrocyte heterokaryons synthesized chick constitutive polypeptides in similar amounts independent of the mammalian parental cell type. Approximately 40 constitutive chick polypeptides were detected in heterokaryons after immunopurification and two-dimensional gel electrophoresis. The pattern of synthesis of these polypeptides was similar in heterokaryons formed by fusing chicken erythrocytes with rat L6 myoblasts, hamster BHK cells, or mouse neuroblastoma cells. Three polypeptides synthesized by non-erythroid chicken cells but less so by embryonic erythrocytes were conspicuous in heterokaryons. Two abundant erythrocyte polypeptides were insignificant in non-erythroid chicken cells and in heterokaryons.  相似文献   

14.
15.
Formamide polyacrylamide gel electrophoresis shows that chicken globin mRNA contains about 6.50 nucleotides, and since only 435 of these code for globin, a further 215 are not translated, and their function and position are not known. This work has produced the following conclusions. 1. 45-50 of these untranslated nucleotides are present as poly (A) at the 3' terminus. 2. The 3' untranslated region of chicken globin mRNA is at least 90 nucleotides in length. This minimal estimate is based on data derived from hybridization of defined lenghts of chicken globin cDNA to rabbit globin mRNA. The percentage of avian globin cDNA sequences which hybridize to rabbit globin mRNA is directly proportional to the length of the cDNA in each case. This relationship holds for lengths of cDNA from 115 up to 620 nucleotides. The low percentage homology for short cDNA molecules is not due to their being short per se. In homologous mRNA excess hybridizations (chicken cDNA/chicken mRNA), all cDNA preparations were completely protected from S1 nuclease digestion. 3. It is probable that there is greater evolutionary divergence in the 3' untranslated region of chicken and rabbit globin mRNA when compared with the coding regions of these molecules; The combined data is sued to formulate a regional map of chicken globin mRNA,  相似文献   

16.
Unlike neurons from avian retina and other regions of avian and mammalian brain, neurons from mammalian retina not only contain gangliosides of the gangliotetraosyl ceramide series but also maintain a prevalence of GD3, a ganglioside of the lactosylceramide series characteristic of proliferative neural cells, when they are fully differentiated. We show here that GD3 is prevalent at all developmental periods of the rat retina from birth [50% of total gangliosidic N-acetylneuraminic acid (NeuNAc)] to adult (30% of total gangliosidic NeuNAc). GD3-synthase specific activity increased about 1.5-fold from birth to day 7 and essentially plateaued thereafter. The GD3-/GM2-synthase specific activity ratio was compared in rat and chicken retina at early and late developmental stages. In chicken retina the ratio was about 0.7 at early (when GD3 is prevalent) and decreased to 0.07 at late (when GD1a is prevalent) developmental stages. In rat retina the ratio was about 13 and 6 at, respectively, early and late developmental stages. These findings suggest that the prevalence of GD3 and of other "b" pathway gangliosides in adult rat retina neurons could be due in part to the maintenance of a high GD3-/GM2-synthase activity ratio throughout development of the tissue.  相似文献   

17.
The avian carcinoma virus MC29 (MC29V) contains a sequence of approximately 1,500 nucleotides which may represent a gene responsible for tumorigenesis by MC29V. We present evidence that MC29V has acquired this nucleotide sequence from the DNA of its host. The host sequence which has been incorporated by MC29V is transcribed into RNA in uninfected chicken cells and thus probably encodes a cellular gene. We have prepared radioactive DNA complementary to the putative MC29V transforming gene (cDNA(mc) (29)) and have found that sequences homologous to cDNA(mc) (29) are present in the genomes of several uninfected vertebrate species. The DNA of chicken, the natural host for MC29V, contains at least 90% of the sequences represented by cDNA(mc) (29). DNAs from other animals show significant but decreasing amounts of complementarity to cDNA(mc) (29) in accordance with their evolutionary divergence from chickens; the thermal stabilities of duplexes formed between cDNA(mc) (29) and avian DNAs also reflect phylogenetic divergence. Sequences complementary to cDNA(mc) (29) are transcribed into approximately 10 copies per cell of polyadenylated RNA in uninfected chicken fibroblasts. Thus, the vertebrate homolog of cDNA(mc) (29) may be a gene which has been conserved throughout vertebrate evolution and which served as a progenitor for the putative transforming gene of MC29V. Recent experiments suggest that the putative transforming gene of avian erythroblastosis virus, like that of MC29V, may have arisen by incorporation of a host gene (Stehelin et al., personal communication). These findings for avian erythroblastosis virus and MC29V closely parallel previous results, suggesting a host origin for src (D. H. Spector, B. Baker, H. E. Varmus, and J. M. Bishop, Cell 13:381-386, 1978; D. H. Spector, K. Smith, T. Padgett, P. McCombe, D. Roulland-Dussoix, C. Moscovici, H. E. Varmus, and J. M. Bishop, Cell 13:371-379, 1978; D. H. Spector, H. E. Varmus, and J. M. Bishop, Proc. Natl. Acad. Sci. U.S.A. 75:4102-4106, 1978; D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, Nature [London] 260:170-173, 1976), the gene responsible for tumorigenesis by avian sarcoma virus. Avian sarcoma virus, avian erythroblastosis virus, and MC29V, however, induce distinctly different spectra of tumors within their host. The putative transforming genes of these viruses share no detectable homology, although sequences homologous to all three types of putative transforming genes occur and are highly conserved in the genomes of several vertebrate species. These data suggest that evolution of oncogenic retroviruses has frequently involved a mechanism whereby incorporation and perhaps modification of different host genes provides each virus with the ability to induce its characteristic tumors.  相似文献   

18.
19.
The paired-like homeobox-containing gene Rx has a critical role in the eye development of several vertebrate species including Xenopus, mouse, chicken, medaka, zebrafish and human. Rx is initially expressed in the anterior neural region of developing embryos, and later in the retina and ventral hypothalamus. Abnormal regulation or function of Rx results in severe abnormalities of eye formation. Overexpression of Rx in Xenopus and zebrafish embryos leads to overproliferation of retinal cells. A targeted elimination of Rx in mice results in a lack of eye formation. Mutations in Rx genes are the cause of the mouse mutation eyeless (ey1), the medaka temperature sensitive mutation eyeless (el) and the zebrafish mutation chokh. In humans, mutations in Rx lead to anophthalmia. All of these studies indicate that Rx genes are key factors in vertebrate eye formation. Because these results cannot be easily reconciled with the most popular dogmas of the field, we offer our interpretation of eye development and evolution.  相似文献   

20.
Mammalian skeletal muscles express a single triad junctional foot protein, whereas avian muscles have two isoforms of this protein. We investigated whether either case is representative of muscles from other vertebrate classes. We identified two foot proteins in bullfrog and toadfish muscles on the basis of (a) copurification with [3H]epiryanodine binding; (b) similarity to avian muscle foot proteins in native and subunit molecular weights; (c) recognition by anti-foot protein antibodies. The bullfrog and toadfish proteins exist as homooligomers. The subunits of the bullfrog muscle foot protein isoforms are shown to be unique by peptide mapping. In addition, immunocytochemical localization established that the bullfrog muscle isoforms coexist in the same muscle cells. The isoforms in either bullfrog and chicken muscles have comparable [3H]epiryanodine binding capacities, whereas in toadfish muscle the isoforms differ in their levels of ligand binding. Additionally, chicken thigh and breast muscles differ in the relative amounts of the two isoforms they contain, the amounts being similar in breast muscle and markedly different in thigh muscle. In conclusion, in contrast to mammalian skeletal muscle, two foot protein isoforms are present in amphibian, avian, and piscine skeletal muscles. This may represent a general difference in the architecture and/or a functional specialization of the triad junction in mammalian and nonmammalian vertebrate muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号