首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In mycobacterial growth medium 40 to 400 microM citrate was required to solubilize 2 microM 55Fe. This solubilized 55Fe was taken up into both iron-deficient and iron sufficient washed cell suspensions of Mycobacterium smegmatis and Mycobacterium bovis BCG. Although the 55Fe was taken up into the cell, the citrate was not. The uptake system with M. smegmatis was not inhibited by electron transport inhibitors, uncouplers of oxidative phosphorylation, or thiol reagents and was saturable with iron at approximately 35 microM. The system was independent of the iron transport systems already known to exist in M. smegmatis: i.e., the two exochelin routes of assimilation as well as the mycobactin-salicylate system. It was not induced by the presence of 400 microM citrate in the growth medium, nor did the presence of citrate in the medium affect the production of either exochelin or mycobactin.  相似文献   

2.
3.
4.
Cell-envelope fractions were isolated from the rapidly growing saprophyte Mycobacterium smegmatis following growth in glycerol/asparagine medium under both iron-limited (0.02 microgram Fe ml-1) and iron-sufficient (2.0 to 4.0 micrograms Fe ml-1) conditions. Examination of these preparations by SDS-PAGE demonstrated the production of at least four additional proteins when iron was limiting. These iron-regulated envelope proteins (IREPs) were ascribed apparent molecular masses of 180 kDa (protein I), 84 kDa (protein II), 29 kDa (protein III) and 25 kDa (protein IV). All four proteins were present in both cell-wall and membrane preparations but spheroplast preparations were devoid of the 29 kDa protein. Attempts at labelling the proteins with 55FeCl3 or 55Fe-exochelin, the siderophore for iron uptake, were unsuccessful, though this was attributed to the denatured state of the proteins following electrophoresis. Antibodies were raised to each of the four proteins: the one raised to protein III inhibited exochelin-mediated iron uptake into iron-deficiently grown cells by 70% but was ineffective against iron uptake into iron-sufficiently grown cells. As exochelin is taken up into both types of cells by a similar process, protein III may not be a simple receptor for iron uptake though the results imply some function connected with this process. The role of the other IREPs is less certain.  相似文献   

5.
Mycobacterium?tuberculosis, the most successful bacterial pathogen, causes tuberculosis, a disease that still causes more than 2 million deaths per year. Arylamine N-acetyltransferase is an enzyme that is conserved in most Mycobacterium spp. The nat gene belongs to an operon that is important for the intracellular survival of M. tuberculosis within macrophages. The nat operon in Mycobacterium smegmatis and other fast-growing mycobacterial species has a unique organization containing genes with uncharacterized function. Here, we describe the biochemical, biophysical and structural characterization of the MSMEG_0308 gene product (MS0308) of the M. smegmatis nat operon. While characterizing the function of MS0308, we validated the oxidoreductase property; however, we found that the enzyme was not utilizing dihydrofolate as its substrate, hence we first report that MS0308 is not a dihydrofolate reductase, as annotated in the genome. The structure of this oxidoreductase was solved at 2.0 ? in complex with the cofactor NADPH and has revealed the hydrophobic pocket where the endogenous substrate binds.  相似文献   

6.
7.
8.
9.
Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme which reduces oxidized methionine to methionine. Since oxidation of methionine in proteins impairs their function, an absence of MsrA leads to abnormalities in different organisms, including alterations in the adherence patterns and in vivo survival of certain pathogenic bacteria. To understand the role of MsrA in intracellular survival of bacteria, we disrupted the gene encoding MsrA in Mycobacterium smegmatis through homologous recombination. The msrA mutant strain of M. smegmatis exhibited significantly reduced intracellular survival in murine J774A.1 macrophages compared to the survival of its wild-type counterpart. Furthermore, immunofluorescence and immunoblotting of phagosomes containing M. smegmatis strains revealed that the phagosomes with the msrA mutant strain acquired both p67(phox) of phagocyte NADPH oxidase and inducible nitric oxide synthase much earlier than the phagosomes with the wild-type strain. In addition, the msrA mutant strain of M. smegmatis was observed to be more sensitive to hydroperoxides than the wild-type strain was in vitro. These results suggest that MsrA plays an important role in both extracellular and intracellular survival of M. smegmatis.  相似文献   

10.
Beta-ketoacyl-acyl carrier protein (ACP) reductase from Mycobacterium tuberculosis (MabA) is responsible for the second step of the type-II fatty acid elongation system of bacteria, plants, and apicomplexan organisms, catalyzing the NADPH-dependent reduction of beta-ketoacyl-ACP to generate beta-hydroxyacyl-ACP and NADP(+). In the present work, the mabA-encoded MabA has been cloned, expressed, and purified to homogeneity. Initial velocity studies, product inhibition, and primary deuterium kinetic isotope effects suggested a steady-state random bi-bi kinetic mechanism for the MabA-catalyzed reaction. The magnitudes of the primary deuterium kinetic isotope effect indicated that the C(4)-proS hydrogen is transferred from the pyridine nucleotide and that this transfer contributes modestly to the rate-limiting step of the reaction. The pH-rate profiles demonstrated groups with pK values of 6.9 and 8.0, important for binding of NADPH, and with pK values of 8.8 and 9.6, important for binding of AcAcCoA and for catalysis, respectively. Temperature studies were employed to determine the activation energy of the reaction. Solvent kinetic isotope effects and proton inventory analysis established that a single proton is transferred in a partially rate-limiting step and that the mechanism of carbonyl reduction is probably concerted. The observation of an inverse (D)2(O)V/K and an increase in (D)2(O)V when [4S-(2)H]NADPH was the varied substrate obscured the distinction between stepwise and concerted mechanisms; however, the latter was further supported by the pH dependence of the primary deuterium kinetic isotope effect. Kinetic and chemical mechanisms for the MabA-catalyzed reaction are proposed on the basis of the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号