首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 133 毫秒
1.
To develop vaccination strategies against HIV-1 infection aimed to specifically enhance the cell-mediated immunity (CMI), we have engineered vaccinia virus (VV) recombinants expressing HIV-1 Env (rVVenv) and murine IL-12 (rVVlucIL-12) genes or coexpressing both genes (rVVenvIL-12). In mice inoculated with rVVlucIL-12 there is a rapid clearance of the virus, and this correlates with the induction of high levels of IL-12 and IFN-gamma in serum and spleen early after infection. Enzyme-linked immunospot analysis of mice inoculated with rVVlucIL-12, revealed a nearly 2-fold increase in the number of specific anti-VV CD8+ T cells compared with that in mice given control rVV, and the serum Ab response was biased in favor of a Th1 response. An enhancement of about 2-fold in the number of anti-gp160 IFN-gamma-secreting CD8+ T cells was observed in mice inoculated with rVVenvIL-12, when a dose of 1 x 107 PFU/mouse was used, but this enhancement was not observed when mice were given 5 x 107 PFU. This variation with virus dosage was confirmed in mice immunized simultaneously with different multiplicities of rVV expressing singly the env or IL-12 genes. The highest specific CMI was obtained in mice coadministered a low dose (2 x 104 PFU) of rVVlucIL-12 and 1 x 107 PFU of rVVenv. Our findings provide evidence for specific enhancement of the CMI to HIV-1 Env by the differential expression of IL-12 and env genes delivered from VV recombinants. This approach can be of wide vaccination interest as a means to improve immune responses to other Ags.  相似文献   

2.
To study the effect of genetic immunization on transgenic expression of hepatitis C virus (HCV) proteins, we evaluated the immunological response of HCV transgenic mice to HCV expression plasmids. FVB/n transgenic mice expressing HCV structural proteins (core, E1, and E2) and wild-type (WT) FVB/n mice were immunized intramuscularly with plasmids expressing core (pHCVcore) or core/E1/E2 (pHCVSt). After immunization, HCV-specific humoral and cellular immune response was studied. Both WT and transgenic mice immunized with either HCV construct produced antibodies and exhibited T-cell proliferative responses against core or envelope. In WT mice immunized with pHCVSt, cytotoxic T-lymphocyte (CTL) activities were detected against E2 but not against core or E1, whereas strong CTL activities against core could be detected in WT mice immunized with pHCVcore. In pHCVSt-immunized, transgenic mice, CTL activities against the core or envelope were completely absent, but core-specific CTL activities could be detected in pHCVcore-immunized transgenic mice. A similar pattern of immune responses was also observed in other mouse strains, including a transgenic line expressing human HLA-A2.1 molecules (AAD mice). Despite the presence of a peripheral cellular immunity against HCV, no liver pathology or lymphocytic infiltrate was observed in these transgenic mice. Our study suggests a hierarchy of CTL response against the HCV structural proteins (E2 > core > E1) in vivo when the proteins are expressed as a polyprotein. The HCV transgenic mice can be induced by DNA immunization to generate anti-HCV antibodies and anticore CTLs. However, they are tolerant at the CTL level against the E2 protein despite DNA immunization.  相似文献   

3.
Th1类细胞因子对pHCV-C重组体诱生免疫应答的增强作用   总被引:2,自引:0,他引:2  
为了探索Th1类细胞因子IL-2和IL-12对含丙型肝炎病毒(HCV)核心(C)基因重组体诱生的免疫应答的增强作用,本文构建了包含HCVC基因片段的重组质粒pHCV-C,将其单独或与Th1类细胞因子表达质粒pIL-2或pIL-12共免疫BALB/c小鼠,ELISA法检测免疫小鼠血清中的HCVC特异性抗体滴度;以pHCV-C转染SP2/0细胞,经筛选稳定表达HCVC抗原者(SP2/0-HCV-C)为靶细胞,  相似文献   

4.
Osorio Y  Ghiasi H 《Journal of virology》2003,77(10):5774-5783
The adjuvant effects of cytokines in humoral and cell-mediated immunity to herpes simplex virus type 1 (HSV-1) have been examined in mice using HSV-1 recombinant viruses expressing murine interleukin-2 (IL-2), IL-4, or gamma interferon (IFN-gamma) gene. Groups of naive BALB/c mice were immunized intraperitoneally with one or three doses of the HSV-1 recombinant viruses expressing IL-2, IL-4, or IFN-gamma or with parental control virus. Despite similar replication kinetics, these three recombinant viruses elicited different immune responses to HSV-1 on immunization. Immunization with the recombinant virus expressing IL-4 elicited a humoral response of greater magnitude than immunization with the recombinant viruses expressing IL-2 or IFN-gamma or with parental virus. In contrast, immunization with recombinant virus expressing IL-2 elicited a higher cytotoxic T-cell response than immunization with viruses expressing IL-4 or IFN-gamma. Stimulation in vitro of splenocytes obtained from the mice immunized with UV-inactivated HSV-1 McKrae resulted in a T(H)1 pattern of cytokine expression irrespective of the recombinant virus used in the immunization. As observed for the parental virus, both CD4(+) and CD8(+) T cells contributed equally to the production of IL-2 by the splenocytes of mice immunized with any of the three recombinant viruses. However, the pattern of IFN-gamma production by CD4(+) and CD8(+) T cells differed according to the recombinant virus used. After lethal ocular challenge, all immunized mice were protected completely against death and manifestations of eye disease caused by HSV-1, which are typical responses in unimmunized mice. Mice immunized with IL-4-expressing virus cleared the virus from their eyes more rapidly than mice immunized with IL-2- or IFN-gamma-expressing virus. Taken together, our results suggest that, in contrast to IFN-gamma which did not exhibit an adjuvant effect, both IL-4 and IL-2 act as adjuvants in immunization with HSV, with IL-4 showing greater efficacy.  相似文献   

5.
CD40 ligand (CD40L) is a cell surface costimulatory molecule expressed mainly by activated T cells. CD40L is critically important for T-B cell and T cell-dendritic cell interactions. CD40L expression promotes Th1 cytokine responses to protein Ags and is responsible for Ig isotype switching in B cells. Respiratory syncytial virus (RSV) is an important pathogen of young children and the elderly, which causes bronchiolitis and pneumonia. Studies of mice infected with RSV suggest that a Th2 cytokine response may be responsible for enhanced pulmonary disease. To investigate the effect CD40L has on RSV immunity, mice were infected simultaneously with RSV and either an empty control adenovirus vector or one expressing CD40L or were coimmunized with plasmid DNA vectors expressing CD40L and RSV F and/or G proteins and subsequently challenged with RSV. The kinetics of the intracellular and secreted cytokine responses, the cytotoxic T lymphocyte precursor frequency, NO levels in lung lavage, rates of virus clearance, and anti-RSV Ab titers were determined. These studies show that coincident expression of CD40L enhances the Th1 (IL-2 and IFN-gamma) cytokine responses, increases the expression of TNF-alpha and NO, accelerates virus clearance, and increases the anti-F and anti-G Ab responses. These data suggest that CD40L may have the adjuvant properties needed to optimize the safety and efficacy of RSV vaccines.  相似文献   

6.
The prevalence of preexisting immunity to adenoviruses in the majority of the human population might adversely impact the development of adaptive immune responses against adenovirus vector-based vaccines. To address this issue, we primed BALB/c mice either intranasally (i.n.) or intramuscularly (i.m.) with varying doses of wild type (WT) human adenovirus subtype 5 (HAd5). Following the development of immunity against HAd5, we immunized animals via the i.n. or i.m. route of inoculation with a HAd vector (HAd-HA-NP) expressing the hemagglutinin (HA) and nucleoprotein (NP) of A/Vietnam/1203/04 (H5N1) influenza virus. The immunogenicity and protection results suggest that low levels of vector immunity (<520 virus-neutralization titer) induced by priming mice with up to 10(7) plaque forming units (p.f.u.) of HAd-WT did not adversely impact the protective efficacy of the vaccine. Furthermore, high levels of vector immunity (approximately 1500 virus-neutralization titer) induced by priming mice with 10(8) p.f.u. of HAd-WT were overcome by either increasing the vaccine dose or using alternate routes of vaccination. A further increase in the priming dose to 10(9) p.f.u. allowed only partial protection. These results suggest possible strategies to overcome the variable levels of human immunity against adenoviruses, leading to better utilization of HAd vector-based vaccines.  相似文献   

7.
An important aspect of ocular herpes simplex virus type 1 (HSV-1) vaccine development is identification of an appropriate adjuvant capable of significantly reducing both virus replication in the eye and explant reactivation in trigeminal ganglia. We showed recently that a recombinant HSV-1 vaccine expressing interleukin-4 (IL-4) is more efficacious against ocular HSV-1 challenge than recombinant viruses expressing IL-2 or gamma interferon (IFN-gamma) (Y. Osorio and H. Ghiasi, J. Virol. 77:5774-5783, 2003). We have now constructed and compared recombinant HSV-1 viruses expressing IL-12p35 or IL-12p40 molecule with IL-4-expressing HSV-1 recombinant virus. BALB/c mice were immunized intraperitoneally with IL-12p35-, IL-12p40-, IL-12p35+IL-12p40-, or IL-4-expressing recombinant HSV-1 viruses. Controls included mice immunized with parental virus and mice immunized with the avirulent strain KOS. The efficacy of each vaccine in protecting against ocular challenge with HSV-1 was assessed in terms of survival, eye disease, virus replication in the eye, and explant reactivation. Neutralizing antibody titers, T-cell responses, and expression of 32 cytokines and chemokines were also evaluated. Mice immunized with recombinant HSV-1 expressing IL-12p35 exhibited the lowest virus replication in the eye, the most rapid virus clearance, and the lowest level of explant reactivation. The higher efficacy against ocular virus replication and explant reactivation correlated with higher neutralizing antibody titers, cytotoxic-T-lymphocyte activities, and IFN-gamma expression in recombinant HSV-1 expressing IL-12p35 compared to other vaccines. Mice immunized with both IL-12p35 and IL-12p40 had lower neutralizing antibody responses than mice immunized with IL-12p35 alone. Our results confirm that recombinant virus vaccines expressing cytokine genes can enhance the overall protection against infection, with the IL-12p35 vaccine being the most efficacious of those tested. Collectively, the results support the potential use of IL-12p35 as a vaccine adjuvant, without the toxicity-associated concerns of IL-12.  相似文献   

8.
Successful active immunization against cancer requires induction of immunity against self or mutated self Ags. However, immunization against self Ags is difficult. Xenogeneic immunization with orthologous Ags induces cancer immunity. The present study evaluated the basis for immunity induced by active immunization against a melanoma differentiation Ag, gp100. Tumor rejection of melanoma was assessed after immunization with human gp100 (hgp100) DNA compared with mouse gp100 (mgp100). C57BL/6 mice immunized with xenogeneic full-length hgp100 DNA were protected against syngeneic melanoma challenge. In contrast, mice immunized with hgp100 DNA and given i.p. tolerizing doses of the hgp100 D(b)-restricted peptide, hgp100(25-33), were incapable of rejecting tumors. Furthermore, mice immunized with DNA constructs of hgp100 in which the hgp100(25-27) epitope was substituted with the weaker D(b)-binding epitope from mgp100 (mgp100(25-27)) or a mutated epitope unable to bind D(b) did not reject B16 melanoma. Mice immunized with a minigene construct of hgp100(25-33) rejected B16 melanoma, whereas mice immunized with the mgp100(25-33) minigene did not develop protective tumor immunity. In this model of xenogeneic DNA immunization, the presence of an hgp100 heteroclitic epitope with a higher affinity for MHC created by three amino acid (25 to 27) substitutions at predicted minor anchor residues was necessary and sufficient to induce protective tumor immunity in H-2(b) mice with melanoma.  相似文献   

9.
Replication-deficient adenovirus and modified vaccinia virus Ankara (MVA) vectors expressing single pre-erythrocytic or blood-stage Plasmodium falciparum Ags have entered clinical testing using a heterologous prime-boost immunization approach. In this study, we investigated the utility of the same immunization regimen when combining viral vectored vaccines expressing the 42-kDa C terminus of the blood-stage Ag merozoite surface protein 1 and the pre-erythrocytic Ag circumsporozoite protein in the Plasmodium yoelii mouse model. We find that vaccine coadministration leads to maintained Ab responses and efficacy against blood-stage infection, but reduced secondary CD8(+) T cell responses against both Ags and efficacy against liver-stage infection. CD8(+) T cell interference can be minimized by coadministering the MVA vaccines at separate sites, resulting in enhanced liver-stage efficacy in mice immunized against both Ags compared with just one. CD8(+) T cell interference (following MVA coadministration as a mixture) may be caused partly by a lack of physiologic space for high-magnitude responses against multiple Ags, but is not caused by competition for presentation of Ag on MHC class I molecules, nor is it due to restricted T cell access to APCs presenting both Ags. Instead, enhanced killing of peptide-pulsed cells is observed in mice possessing pre-existing T cells against two Ags compared with just one, suggesting that priming against multiple Ags may in part reduce the potency of multiantigen MVA vectors to stimulate secondary CD8(+) T cell responses. These data have important implications for the development of a multistage or multicomponent viral vectored malaria vaccine for use in humans.  相似文献   

10.
Cytokine-encoding viral vectors are considered to be promising in cancer gene immunotherapy. Interleukin 12 (IL-12) has been used widely for anti-tumor treatment, but the administration route and tumor characteristics strongly influence therapeutic efficiency. Meth-A fibrosarcoma has been demonstrated to be insensitive to IL-12 treatment via systemic administration. In the present study, we developed an IL-12-encoding fiber-mutant adenoviral vector (AdRGD-IL-12) that showed enhanced gene transfection efficiency in Meth-A tumor cells, and the production of IL-12 p70 in the culture supernatant from transfected cells was confirmed by ELISA. In therapeutic experiments, a single low-dose (2 x 10(7) plaque-forming units) intratumoral injection of AdRGD-IL-12 elicited pronounced anti-tumor activity and notably prolonged the survival of Meth-A fibrosarcoma-bearing mice. Immunohistochemical staining revealed that the IL-12 vector induced the accumulation of T cells in tumor tissue. Furthermore, intratumoral administration of the vector induced an anti-metastasis effect as well as long-term specific immunity against syngeneic tumor challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号