首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The iris is a fine structure that controls the amount of light that enters the eye. The ciliary body controls the shape of the lens and produces aqueous humor. The retinal pigment epithelium and choroid (RPE/choroid) are essential in supporting the retina and absorbing light energy that enters the eye. Proteins were extracted from iris, ciliary body, and RPE/choroid tissues of eyes from five individuals and fractionated using SDS‐PAGE. After in‐gel digestion, peptides were analyzed using LC‐MS/MS on an Orbitrap Elite mass spectrometer. In iris, ciliary body, and RPE/choroid, we identified 2959, 2867, and 2755 nonredundant proteins with peptide and protein false‐positive rates of <0.1% and <1%, respectively. Forty‐three unambiguous protein isoforms were identified in iris, ciliary body, and RPE/choroid. Four “missing proteins” were identified in ciliary body based on ≥2 proteotypic peptides. The mass spectrometric proteome database of the human iris, ciliary body, and RPE/choroid may serve as a valuable resource for future investigations of the eye in health and disease. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001424 and PXD002194.  相似文献   

2.
Proteome analysis of lipofuscin in human retinal pigment epithelial cells   总被引:10,自引:0,他引:10  
Excessive accumulation of lipofuscin in postmitotic retinal pigment epithelial cells is a common pathogenetic pathway in various blinding retinal diseases including age-related macular degeneration, which is now the most common cause of registerable blindness in the industrialized nations. To better understand the role of lipofuscin accumulation and to manipulate the pathogenetic mechanisms on both experimental and therapeutic levels we analyzed the proteome of isolated human ocular lipofuscin granules from human RPE cells. After homogenization and fractionation by gradient ultracentrifugation of the RPE/choroid complex from 10 pairs of human donors, protein compounds were separated by 2D gel electrophoresis and analyzed using matrix-assisted laser desorption/ionization mass spectrometry and HPLC-coupled electrospray tandem mass spectrometry. Besides a better understanding of downstream pathways, this approach may provide new targets for therapeutic interventions in a currently untreatable disease.  相似文献   

3.
The retinal pigment epithelium (RPE) is essential for retinoid recycling and phagocytosis of photoreceptors. Understanding of proteome changes that mediate oxidative stress-induced degeneration of RPE cells may provide further insight into the molecular mechanisms of retinal diseases. In the current study, comparative proteomics has been applied to investigate global changes of RPE proteins under oxidative stress. Proteomic techniques, including 2D SDS-PAGE, differential gel electrophoresis (DIGE), and tandem time-of-flight (TOF-TOF) mass spectrometry, were used to identify early protein markers of oxidative stress in the RPE. Two biological models of RPE cells revealed several differentially expressed proteins that are involved in key cellular processes such as energy metabolism, protein folding, redox homeostasis, cell differentiation, and retinoid metabolism. Our results provide a new perspective on early signaling molecules of redox imbalance in the RPE and putative therapeutic target proteins of RPE diseases caused by oxidative stress.  相似文献   

4.
The isomerization of all-trans retinol (vitamin A) to 11-cis retinol in the retinal pigment epithelium (RPE) is a key step in the visual process for the regeneration of the visual pigment chromophore, 11-cis retinal. LRAT and RPE65 are recognized as the minimal isomerase catalytic components. However, regulators of this rate-limiting step are not fully identified and could account for the phenotypic variability associated with inherited retinal degeneration (RD) caused by mutations in the RPE65 gene. To identify new RPE65 partners, we screened a porcine RPE mRNA library using a yeast two-hybrid assay with full-length human RPE65. One identified clone (here named FATP1c), containing the cytosolic C-terminal sequence from the fatty acid transport protein 1 (FATP1 or SLC27A1, solute carrier family 27 member 1), was demonstrated to interact dose-dependently with the native RPE65 and with LRAT. Furthermore, these interacting proteins colocalize in the RPE. Cellular reconstitution of human interacting proteins shows that FATP1 markedly inhibits 11-cis retinol production by acting on the production of all-trans retinyl esters and the isomerase activity of RPE65. The identification of this new visual cycle inhibitory component in RPE may contribute to further understanding of retinal pathogenesis.  相似文献   

5.
The proteins in blood were all first expressed as mRNAs from genes within cells. There are databases of human proteins that are known to be expressed as mRNA in human cells and tissues. Proteins identified from human blood by the correlation of mass spectra that fail to match human mRNA expression products may not be correct. We compared the proteins identified in human blood by mass spectrometry by 10 different groups by correlation to human and nonhuman nucleic acid sequences. We determined whether the peptides or proteins identified by the different groups mapped to the human known proteins of the Reference Sequence (RefSeq) database. We used Structured Query Language data base searches of the peptide sequences correlated to tandem mass spectrometry spectra and basic local alignment search tool analysis of the identified full length proteins to control for correlation to the wrong peptide sequence or the existence of the same or very similar peptide sequence shared by more than one protein. Mass spectra were correlated against large protein data bases that contain many sequences that may not be expressed in human beings yet the search returned a very high percentage of peptides or proteins that are known to be found in humans. Only about 5% of proteins mapped to hypothetical sequences, which is in agreement with the reported false-positive rate of searching algorithms conditions. The results were highly enriched in secreted and soluble proteins and diminished in insoluble or membrane proteins. Most of the proteins identified were relatively short and showed a similar size distribution compared to the RefSeq database. At least three groups agree on a nonredundant set of 1671 types of proteins and a nonredundant set of 3151 proteins were identified by at least three peptides.  相似文献   

6.
We have applied proteomic analysis to the degeneration of photoreceptors. In the rd1 mouse, a recessive mutation in the PDE6B gene leads to rapid loss of rods through apoptosis. By 5 wk postnatal, virtually all rod photoreceptors have degenerated, leaving one row of cones that degenerates secondarily. In order to assess comparative protein expression, proteins extracted from whole retina were resolved on a two-dimensional gel and identified by mass spectrometry combined with database screening. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry coupled to peptide mass fingerprinting was sufficient to identify most of the proteins, the remaining being identified with additional sequence information obtained by nano-electrospray ionization tandem mass spectrometry or liquid chromatography tandem mass spectrometry. The study revealed 212 spots, grouped into 109 different proteins. Differential analysis showed loss of proteins involved in the rod-specific phototransduction cascade, as well as induction of proteins from the crystallin family, in response to retinal degeneration. Identification of such pathways may contribute to new therapeutic approaches.  相似文献   

7.
The phospholipids present in uveal (iris/ciliary body and choroid) and retinal bovine ocular melanosomes were identified using mass spectrometry. Similar phospholipid content is found for the two types of uveal melanosome, with sphingomyelin being the major species. Significant differences are found between the uveal and retinal melanosome. Glycerophosphoethanolamine (GPEtn) is the major species in the retinal pigment epithelium (RPE); 93% of the GPEtn contain polyunsaturated fatty acids, notably docosahexanoic acid and arachidonic acid, in the sn-2 position. RPE melanosomes also contain detectable quantities of glycerophosphoserine and glycerophosphate; these species were not detected in the uveal samples. While the structural and functional roles of melanosomal lipids largely remain to be determined, these different lipid compositions reported herein offer new insights into the roles of melanosomes in the different ocular tissues.  相似文献   

8.
The protein content of melanosomes in the retinal pigment epithelium (RPE) was analyzed by mass spectrometry. More than 100 proteins were found to be common to two out of three variations of sample preparation. Some proteins normally associated with other organelles were detected. Several lysosomal enzymes were detected, with the presence of cathepsin D confirmed by immunoelectron microscopy, thus supporting the previously suggested notion that melanosomes may contribute to the degradation of ingested photoreceptor outer segment disks.  相似文献   

9.
We have developed a cell culture procedure that can produce large quantities of confluent monolayers of primary human fetal retinal pigment epithelium (hfRPE) cultures with morphological, physiological and genetic characteristics of native human RPE. These hfRPE cell cultures exhibit heavy pigmentation, and electron microscopy show extensive apical membrane microvilli. The junctional complexes were identified with immunofluorescence labeling of various tight junction proteins. Epithelial polarity and function of these easily reproducible primary cultures closely resemble previously studied mammalian models of native RPE, including human. These results were extended by the development of therapeutic interventions in several animal models of human eye disease. We have focused on strategies for the removal of abnormal fluid accumulation in the retina or subretinal space. The extracellular subretinal space separates the photoreceptor outer segments and the apical membrane of the RPE and is critical for maintenance of retinal attachments and a whole host of RPE/retina interactions.  相似文献   

10.
Sequence determination of peptides is a crucial step in mass spectrometry–based proteomics. Peptide sequences are determined either by database search or by de novo sequencing using tandem mass spectrometry. Determination of all the theoretical expected peptide fragments and eliminating false discoveries remains a challenge in proteomics. Developing standards for evaluating the performance of mass spectrometers and algorithms used for identification of proteins is important for proteomics studies. The current study is focused on these aspects by using synthetic peptides. A total of 599 peptides were designed from in silico tryptic digest with 1 or 2 missed cleavages from 199 human proteins, and synthetic peptides corresponding to these sequences were obtained. The peptides were mixed together, and analysis was carried out using liquid chromatography–electrospray ionization tandem mass spectrometry on a Q-Exactive HF mass spectrometer. The peptides and proteins were identified with SEQUEST program. The analysis was carried out using the proteomics workflows. A total of 573 peptides representing 196 proteins could be identified, and a spectral library was created for these peptides. Analysis parameters such as “no enzyme selection” gave the maximum number of detected peptides as compared with trypsin in the selection. False discoveries could be identified. This study highlights the limitations of peptide detection and the need for developing powerful algorithms along with tools to evaluate mass spectrometers and algorithms. It also shows the limitations of peptide detection even with high-end mass spectrometers. The mass spectral data are available in ProteomeXchange with accession no. PXD017992.  相似文献   

11.
Cytomegalovirus (CMV) retinitis is characterized by alterations in retinal cell function and host responses to virus replication. The goal of this study was to evaluate the induction of cyclooxygenase-2 (COX-2) and prostaglandin (PGE) in CMV infected human retinal pigment epithelial (RPE) cells and to determine their effect on virus replication. CMV immediate early (IE) protein and COX-2 proteins were identified in RPE cells in retinal tissue sections from patients with CMV retinitis. COX-2 mRNA and protein were induced after CMV infection of human RPE cell cultures. CMV infection of RPE cells induced translocation of NF-kappaB from the cytoplasm to the nucleus. PGE1 and PGE2 were significantly (p<0.001) increased in human RPE cell cultures infected with CMV. Inhibition of CMV IE gene by antisense oligonucleotides abrogated induction of mRNA for COX-2 and protein synthesis of COX-2 and PGE2. PGE enhanced CMV plaque formation and real time PCR analysis revealed that PGE treatment significantly increased CMV DNA copy numbers. These studies demonstrate that when CMV replicates within human RPE cells, COX-2 induction augments virus replication via the PGE pathway. The induction of COX-2 and PGE during retinal CMV infection may augment virus replication and alter a variety of retinal physiological responses.  相似文献   

12.
A2E, an important constituent of lipofuscin in human retinal pigment epithelium (RPE), is thought to mediate light-induced oxidative damage associated with aging and other ocular disorders. Ocular carotenoids in overlying retinal tissues were measured by HPLC and mass spectrometry and were correlated with levels of RPE A2E. We observed a statistically significant increase in total A2E levels in human RPE/choroid with age, and A2E levels in macular regions were approximately 1/3 lower than in peripheral retinal regions of the same size. There was a statistically significant inverse correlation between peripheral retina carotenoids and peripheral RPE/choroid A2E. Prospective carotenoid supplementation studies in Japanese quail demonstrated nearly complete inhibition of A2E formation and oxidation. These findings support current recommendations to increase dietary intake of xanthophyll carotenoids in individuals at risk for macular degeneration and highlight a new potential mechanism for their protective effects—inhibition of A2E formation and oxidation in the eye.  相似文献   

13.
Bifidobacteria are Gram-positive prokaryotes that naturally colonize the human gut where they exert several health-promoting effects. The present paper reports the use of a strong cation exchange-reversed-phase-tandem mass spectrometry strategy to catalogue the most abundantly expressed proteins of a probiotic Bifidobacterium infantis strain. A global view of the B. infantis proteome was obtained. The bimodal representation of the proteins identified by mass spectrometry provides the first theoretical two-dimensional map of protein distribution for this organism. Among the 136 proteins identified by multidimensional protein identification technology (MudPIT) analysis, 118 showed the highest similarity with the translated sequences of B. longum genome, two proteins were similar to other Bifidobacterium species and the remaining 16 were similar to different genera. Specific biological activities have been assigned to 115 identified proteins, whereas 21 have been referred to the group of hypothetical proteins. The MudPIT approach allowed us to identify high mass and basic isoelectric point proteins that are generally challenging to visualize using the traditional two-dimensional electrophoresis technique. Redundancy in peptide and protein identification using the double chromatography technique was also evaluated.  相似文献   

14.
Protein phosphorylations have essential regulatory roles in visual signaling. Previously, we found that phosphorylation of several proteins in the retina and retinal pigment epithelium (RPE) is involved in anti-apoptotic signaling under oxidative stress conditions, including light exposure. In this study, we used a phosphoprotein enrichment strategy to evaluate the light-induced phosphoproteome of primary bovine RPE cells. Phosphoprotein-enriched extracts from bovine RPE cells exposed to light or dark conditions for 1h were separated by 2D SDS-PAGE. Serine and tyrosine phosphorylations were visualized by 2D phospho Western blotting and specific phosphorylation sites were analyzed by tandem mass spectrometry. Light induced a marked increase in tyrosine phosphorylation of beta crystallin A3 and A4. The most abundant light-induced up-regulated phosphoproteins were crystallins of 15-25 kDa, including beta crystallin S and zeta crystallin. Phosphorylation of beta crystallin suggests an anti-apoptotic chaperone function of crystallins in the RPE. Other chaperones, cytoskeletal proteins, and proteins involved in energy balance were expressed at higher levels in the dark. A detailed analysis of RPE phosphoproteins provides a molecular basis for understanding of light-induced signal transduction and anti-apoptosis mechanisms. Our data indicates that phosphorylation of crystallins likely represents an important mechanism for RPE shielding from physiological and pathophysiological light-induced oxidative injury.  相似文献   

15.
16.
The previous study demonstrated that the streptozotocin (STZ)-induced diabetic mice can be cured by injecting the regenerating pancreatic extract (RPE) of the partially pancreatectomized Wistar-Kyoto rats. In this study, to characterize the complex pattern of protein expression in RPE, the proteins of altered expression level after the pancreatectomy were identified by 2-dimensional electrophoresis (2-DE) and mass spectrometry. Of 76 significantly up- or down-regulated protein spots, 61 were identified by MALDI-TOF/MS. Moreover, the whole RPE was fractionated into 4 groups using an anion-exchange chromatography and each fraction's cell proliferating activity was measured by MTT assay. Compared to the normal pancreatic extract, fraction 3 and 4 of RPE showed the maximal cell proliferating activity. On 2-DE of 3 and 4 fractions, a total of 10 spots, which are differentially expressed after the pancreatectomy, were identified by MS/MS. Of these identified proteins, Reg III which might be functionally associated with well known regenerating factor (Reg I) was found. Taken together, our results demonstrated that the differential protein expression associated with pancreas regeneration could be sought by 2-DE and mass spectroscopy and suggested that the pre-fractionation method combined with in vitro cell proliferation assay is effectively used to pinpoint the active components for pancreas regeneration.  相似文献   

17.
A method for constructing one-dimensional proteomic maps (1D-PM) based on mass spectrometric identification of proteins from adjacent slices of one-dimensional electrophoregram has been developed. For the proteomic mapping, gel lanes were sectioned into slices less than 0.2 mm thick and each slice was subjected to enzymatic hydrolysis. The resultant mixture of peptide fragments was analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). Proteins were identified by the mass spectra obtained. Data on peptide fragments and corresponding identified proteins were presented as a 1D-PM. Proteomic maps were constructed by assigning individual proteins to gel slices based on number of matching peptides in a corresponding MS-data. On 1D-PM of human liver microsomal fraction, 18 proteins were identified in the region of 40–65 kDa. These included 12 membrane proteins belonging to the superfamily of cytochromes P450. Pooling of mass spectrometric data, obtained from several adjacent gel slices (molecular zooming) increased sequence coverage of CYP2A (cytochrome P450 family 2A). The maximal coverage of 66% significantly exceeded the level of 48% that could be obtained using one (even the most informative) slice. This method can be applied to the proteomic profiling of membrane-bound proteins.  相似文献   

18.
The application of mass spectrometry for determining the topography of integral membrane proteins has focused primarily on the mass determination of fragments that do not reside in the lipid bilayer. In this work, we present the accurate mass determination of transmembrane tryptic peptides of bovine rhodopsin using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The ability to determine the accurate mass of hydrophobic transmembrane peptides will facilitate the mapping of ligand binding sites in membrane receptors. It will also augment the determination of membrane spanning regions from integral membrane proteins digested in lipid bilayers. Affinity-purified rhodopsin in detergent and rhodopsin in retinal rod membranes were digested with trypsin. Tryptic peptides were separated using reverse-phase, high-performance liquid chromatography at 55 degrees C with the detergent octyl-beta-glucoside in the mobile phase. Four of the six transmembrane tryptic peptides of rhodopsin were identified, ranging in mass from 3,260 Da to 6,528 Da. The identities of the peptides were confirmed by Edman microsequencing. In addition, heterogeneity in the glycosylation of the N-terminal tryptic peptide of rhodopsin was identified by MALDI MS, without modifying the carbohydrate prior to analysis.  相似文献   

19.
Functional research of retinal pigment epithelium (RPE) most often relies on utilization of RPE-derived cell lines in vitro. However, no studies about similarities and differences of the respective cell lines exist so far. Thus, we here analyze the proteome of the most popular RPE cell lines: ARPE-19 and hTERT and compare their constitutive and de novo synthesized protein expression profiles to human early passage retinal pigment epithelial cells (epRPE) by 2-D electrophoresis and MALDI-TOF peptide mass fingerprinting. In all three cell lines the baseline protein expression pattern corresponded well to the de novo synthesized cellular proteome. However, comparison of the protein profile of epRPE cells with that of hTERT-RPE cells revealed a higher abundance of proteins related to cell migration, adhesion, and extracellular matrix formation, paralleled by a down-regulation of proteins attributed to cell polarization, and showed an altered expression of detoxification enzymes in hTERT-RPE. ARPE-19 cells, however, exhibited a higher abundance of components of the microtubule cytoskeleton and differences in expression of proteins related to proliferation and cell death. epRPE cells, hTERT-RPE, and ARPE-19 therefore may respond differently with respect to certain functional properties, a finding that should prove valuable for future in vitro studies.  相似文献   

20.
Enzyme activities such as of fructose bisphosphatase, malate dehydrogenase and carbonic anhydrase were analyzed after cytosol proteins in the mouse liver and were separated using nondenaturing two-dimensional electrophoresis (2-DE). The activities of both fructose bisphosphatase and malate dehydrogenase were inhibited by thyroxine, and fructose bisphosphatase activity was specifically inhibited by adenosine monophosphate in nondenaturing 2-DE. Furthermore, polypeptides of the separated proteins were analyzed by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or by peptide sequencing using electrospray ionization-tandem mass spectrometry, or both. Proteins separated by 2-DE were identified. These results indicate that the function of proteins such as enzyme activity, and their sequence structure can be analyzed, for example by peptide mapping and peptide sequencing, after the proteins have been separated by nondenaturing 2-DE. Present results also indicate analysis of enzyme activity using nondenaturing 2-DE can be applied to screen substances which affect enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号