首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guo L  Li H  Lu J  Yang Q  Ge Q  Gu W  Bai Y  Lu Z 《Molecular biology reports》2012,39(2):2031-2038
The small non-coding important regulatory molecules, microRNAs (miRNAs), have been widely and deeply studied especially combining high-throughput sequencing technologies. Here, we attempted to track detailed miRNA precursor metabolic products and gain further insight into pre-miRNA processing by completely analyzing high-throughput sequencing data. Highly expressed miRNA precursors could be entirely covered by various short RNAs and small RNA fragments with a hierarchical distribution. miRNAs and some miRNA* regions were detected quite abundant short RNAs as expected, while other regions of precursors were found shorter RNAs or small fragments with fewer sequence counts. Furthermore, we developed a method to analyze relative expression levels of special RNA classes according to divergence of 5′ and 3′ ends, respectively. Generally, there were several quite abundant RNA classes from a given miRNA locus, which suggested dominant cleavage sites of Drosha and Dicer during pre-miRNA processing. Compared with 3′ end, dominant cleavage site in 5′ end always focused on a specific position, which ensured conservation of the identity of miRNA (5′-seed sequence, nucleotides 2–8). Overall, a comprehensive analysis of sequencing data can be used to track pre-miRNA metabolic products and mechanism of pre-miRNA processing and metabolism.  相似文献   

2.
A mature miRNA may be generated from 5p or 3p arm of a hairpin precursor. The selection may be flexible via “arm switching”. However, accumulating evidences suggest that both arms of many pre-miRNAs can yield mature functional miRNAs. Herein, we attempted to compare the isomiR expression profiles between the two arms through analyzing in-house and published small RNA deep sequencing datasets. Although many miR-#-5p and miR-#-3p have been reported as functional miRNAs, fewer miRNA pairs (11 and 6 pairs are collected in tumor and normal cells, respectively) are simultaneously identified as abundant miRNA species. According to isomiR types and dominant isomiR species, miR-#-5p and miR-#-3p show various isomiR expression profiles as well as diverse enrichment levels. IsomiR profiles of non-dominant arm are not well-conserved in 5′ ends as well as isomiR profiles of dominant arm. If both the miR-#-5p and miR-#-3p are abundantly expressed, their isomiR expression profiles are always stable across different samples. Similar to diverse enrichment levels of miR-#-5p and miR-#-3p, the isomiR expression patterns may also be influenced by the phenomenon of “arm switching”. The diverged isomiR expression profiles further enrich the complexity of multiple isomiRs, and complicate the coding-non-coding RNA regulatory network.  相似文献   

3.
4.
Li SC  Liao YL  Chan WC  Ho MR  Tsai KW  Hu LY  Lai CH  Hsu CN  Lin WC 《Genomics》2011,(6):453-459
Rabbit (Oryctolagus cuniculus) is the only lagomorph animal of which the genome has been sequenced. Establishing a rabbit miRNA resource will benefit subsequent functional genomic studies in mammals. We have generated small RNA sequence reads with SOLiD and Solexa platforms to identify rabbit miRNAs, where we identified 464 pre-miRNAs and 886 mature miRNAs. The brain and heart miRNA libraries were used for further in-depth analysis of isomiR distributions. There are several intriguing findings. First, several rabbit pre-miRNAs form highly conserved clusters. Second, there is a preference in selecting one strand as mature miRNA, resulting in an arm selection preference. Third, we analyzed the isomiR expression and validated the expression of isomiR types in different rabbit tissues. Moreover, we further performed additional small RNA libraries and defined miRNAs differentially expressed between brain and heart. We conclude also that isomiR distribution profiles could vary between brain and heart tissues.  相似文献   

5.
Guo L  Li H  Liang T  Lu J  Yang Q  Ge Q  Lu Z 《Molecular biology reports》2012,39(6):6699-6706
3′ addition events in miRNAs are widely detected and may contribute to miRNA stability, but little is known about details of the events in miRNA gene clusters and families. Here, we performed a comprehensive analysis of isomiR expression patterns and 3′ additions in miRNA gene clusters and families by analyzing high-throughput sequencing dataset. According to dominant modified isomiRs, miRNA members in many miRNA gene clusters and families showed the same 3′ additional non-template nucleotides. Although clustered miRNAs and homologous miRNAs had consistent or inconsistent expression levels, we found many of them showed consistent expression patterns at isomiR levels. These findings revealed similar processing mechanism and 3′ modification event of miRNAs in gene clusters and families through miRNA maturation process. The consistent maturation mechanism may contribute to co-regulate biological processes, and may originate from ancestral miRNA genes through complex duplication history.  相似文献   

6.
7.
Raw sequencing reads of miRNAs contain machine-made substitution errors, or even insertions and deletions (indels). Although the error rate can be low at 0.1%, precise rectification of these errors is critically important because isoform variation analysis at single-base resolution such as novel isomiR discovery, editing events understanding, differential expression analysis, or tissue-specific isoform identification is very sensitive to base positions and copy counts of the reads. Existing error correction methods do not work for miRNA sequencing data attributed to miRNAs’ length and per-read-coverage properties distinct from DNA or mRNA sequencing reads. We present a novel lattice structure combining kmers, (k – 1)mers and (k + 1)mers to address this problem. The method is particularly effective for the correction of indel errors. Extensive tests on datasets having known ground truth of errors demonstrate that the method is able to remove almost all of the errors, without introducing any new error, to improve the data quality from every-50-reads containing one error to every-1300-reads containing one error. Studies on experimental miRNA sequencing datasets show that the errors are often rectified at the 5′ ends and the seed regions of the reads, and that there are remarkable changes after the correction in miRNA isoform abundance, volume of singleton reads, overall entropy, isomiR families, tissue-specific miRNAs, and rare-miRNA quantities.  相似文献   

8.
9.
The study aims to explore the potential relationships of evolution, maturation, expression and function between homologous/clustered miRNAs. mir-23∼27∼24 gene cluster, including the two gene clusters (mir-23a and mir-23b) and the three miRNA gene families (mir-23, mir-27 and mir-24), was typically selected as an example. These related miRNAs show similar evolutionary patterns and various expression patterns. Most of them show consistent isomiR expression pattern, and the “switching” phenomenon can be found between different abundant isomiR species. These findings suggest that these sequence or location related miRNAs show the similar miRNA processing and maturation processes, and the robust selection of the most dominant isomiR exists in specific tissues. Functional analysis show that these miRNAs show similar distributions of enriched gene categories, suggesting the close functional prelateships via direct or indirect coordinate regulation in biological processes. The study reveals the close evolutionary, expression and functional relationships between related homologous/clustered miRNAs, which will further enrich miRNA studies and understand direct or indirect interactions between miRNAs.  相似文献   

10.
微RNA(microRNA,miRNA)是一类抑制基因表达的调控分子,在多种生物学进程中扮演重要角色。近来,基于新一代测序技术获得的小RNA测序数据发现,对于某一miRNA来说,它并不是单一的序列,而是由一系列长度/序列及表达不同的异构微RNA (isomicroRNA, isomiRNA/isomiR)所组成。这些isomiR表达多样且序列多样,甚至引入多样的5′端及种子区域。特定miRNA位点在疾病组织中可具有异常的表达模式,现已证实,部分isomiR具有重要的生物学功能。所关注的经典miRNA序列,其实仅是多重isomiR序列中的1条特殊序列,仅从miRNA角度的研究已不足以揭示小RNA的奥秘,全面的研究应同时在miRNA和isomiR中开展,由此可进一步拓宽miRNA的研究思路。本文主要从isomiR的生物学特点、表达及功能等方面进行介绍。  相似文献   

11.
12.
Small RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells. In order to gain additional knowledge about human moRNAs and their putative development-related expression, we applied NGS of small RNAs in human embryonic stem cells (hESCs) and fibroblasts. We found that certain moRNA isoforms are notably expressed in hESCs from loci coding for stem cell-selective or cancer-related miRNA clusters. In contrast, we observed only sparse moRNAs in fibroblasts. Consistent with earlier findings, most of the observed moRNAs derived from conserved loci and their expression did not appear to correlate with the expression of the adjacent miRNAs. We provide here the first report of moRNAs in hESCs, and their expression profile in comparison to fibroblasts. Moreover, we expand the repertoire of hESC miRNAs. These findings provide an expansion on the known repertoire of small non-coding RNA contents in hESCs.  相似文献   

13.
14.
15.
16.
17.
microRNAs (miRNAs) are critical to heart development and disease. Emerging research indicates that regulated precursor processing can give rise to an unexpected diversity of miRNA variants. We subjected small RNA from murine HL-1 cardiomyocyte cells to next generation sequencing to investigate the relevance of such diversity to cardiac biology. ~40 million tags were mapped to known miRNA hairpin sequences as deposited in miRBase version 16, calling 403 generic miRNAs as appreciably expressed. Hairpin arm bias broadly agreed with miRBase annotation, although 44 miR* were unexpectedly abundant (>20% of tags); conversely, 33 -5p/-3p annotated hairpins were asymmetrically expressed. Overall, variability was infrequent at the 5' start but common at the 3' end of miRNAs (5.2% and 52.3% of tags, respectively). Nevertheless, 105 miRNAs showed marked 5' isomiR expression (>20% of tags). Among these was miR-133a, a miRNA with important cardiac functions, and we demonstrated differential mRNA targeting by two of its prevalent 5' isomiRs. Analyses of miRNA termini and base-pairing patterns around Drosha and Dicer cleavage regions confirmed the known bias towards uridine at the 5' most position of miRNAs, as well as supporting the thermodynamic asymmetry rule for miRNA strand selection and a role for local structural distortions in fine tuning miRNA processing. We further recorded appreciable expression of 5 novel miR*, 38 extreme variants and 8 antisense miRNAs. Analysis of genome-mapped tags revealed 147 novel candidate miRNAs. In summary, we revealed pronounced sequence diversity among cardiomyocyte miRNAs, knowledge of which will underpin future research into the mechanisms involved in miRNA biogenesis and, importantly, cardiac function, disease and therapy.  相似文献   

18.
19.
We have developed a highly sensitive, specific and reproducible method for microRNA (miRNA) expression profiling, using the BeadArray™ technology. This method incorporates an enzyme-assisted specificity step, a solid-phase primer extension to distinguish between members of miRNA families. In addition, a universal PCR is used to amplify all targets prior to array hybridization. Currently, assay probes are designed to simultaneously analyse 735 well-annotated human miRNAs. Using this method, highly reproducible miRNA expression profiles were generated with 100–200 ng total RNA input. Furthermore, very similar expression profiles were obtained with total RNA and enriched small RNA species (R2 ≥ 0.97). The method has a 3.5–4 log (105–109 molecules) dynamic range and is able to detect 1.2- to 1.3-fold-differences between samples. Expression profiles generated by this method are highly comparable to those obtained with RT–PCR (R2 = 0.85–0.90) and direct sequencing (R = 0.87–0.89). This method, in conjunction with the 96-sample array matrix should prove useful for high-throughput expression profiling of miRNAs in large numbers of tissue samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号