首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Isolated gills of the freshwater mussel,Ligumia subrostrata, accumulate Na from a pondwater bathing medium. The rate of Na transport by the isolated gill is 13.2±1.1 mol (g dry gill·10 min)–1 which equals or exceeds the estimated Na transport rate of intact animals. Sodium influx is saturable with aV max of 13.6±1.2 mol (g dry gill·10 min)–1 and an affinity (K s) of 0.17 mM Na/l. The isolated gills survive prolonged exposure to pondwater with a constant of 890 l O2 (g dry gill·h)–1 over a 4 h period. Sodium transport in the isolated gills is stimulated 80% above control values by 10–4 M serotonin, 60% by 0.5 mM cAMP and 60% by 12.5 g/ml nystatin. Sodium influx is inhibited by 0.5 mM amiloride and 1 mM lithium.  相似文献   

2.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

3.
Bumetanide-sensitive (BS) unidirectional fluxes of (36)Cl- or (22)Na+ were measured in internally dialyzed squid giant axons while varying the intra- or extracellular concentrations of Na+ and/or Cl-. Raising either [Cl-]i or [Na+]i resulted in a concentration-dependent reduction of the BS influx of both (36)Cl- and (22)Na+. Raising [Cl-]i above 200 mM completely blocked BS influxes. However, raising [Na+]i to 290 mM resulted in saturable but incomplete inhibition of both BS Na+ influx and BS Cl- influx. The consequences of varying intracellular Cl- on cotransporter effluxes were complex. At lower [Cl-]i values (below 100 mM) intracellular Cl- activated cotransporter effluxes. Surprisingly, however, raising [Cl-]i levels > 125 mM resulted in a [Cl-]i-dependent inhibition of BS effluxes of both Na+ and Cl-. On the other hand, raising [Na+]i resulted only in the activation of the BS Na+ efflux; intracellular Na+ did not inhibit BS efflux even at 290 mM. The inhibitory effects of intracellular Na+ on cotransporter-mediated influxes, and lack of inhibitory effects on BS effluxes, are consistent with the trans-side inhibition expected for an ordered binding/release model of cotransporter operation. However, the inhibitory effects of intracellular Cl- on both influxes and effluxes are not explained by such a model. These data suggest that Cl may interact with an intracellular site (or sites), which does not mediate Cl transport, but does modulate the transport activity of the Na+, K+, Cl- cotransporter.  相似文献   

4.
Summary Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl ([Na]i, [K]i, and [Cl]i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; an initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both [K]i and [Cl]i of clear cells decreased by about 45%, whereas [Na]i increased in such a way as to maintain the sum of [Na]i+[K]i constant. There was a small (12–15mm) increse in [Na]i and a decrease in [K]i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in [Cl]i in the face of constant [Na]i+[K]i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation. While the decrease in [K]i and [Cl]i may be instrumental in facilitating influx of ions via Na–K–2Cl cotransporters, the functional significance of MCh-induced cell shrinkage remains unknown.  相似文献   

5.
The intracellular elemental concentrations of K, Na, Cl, P, Mg and Ca within Type I cells of the Malpighian tubules of Locusta migratoria have been measured using electron probe X-ray microanalysis. The distribution of Na, K and Cl was not homogeneous within the cells and concentration gradients exist from basal to apical surfaces. The rate of secretion and the cationic composition of the secreted tubule fluid have also been determined. Furosemide (1 mM) inhibited fluid secretion by about 60%, raised the [Na(+)] but did not significantly alter the [K(+)] of the secreted tubule fluid. When Rb(+) replaced K(+) in the saline fluid secretion was also inhibited by about 60%, but no additional inhibition occurred by the simultaneous inclusion of furosemide. Thus, Rb(+) and furosemide probably act at the same transport site, and Rb(+) cannot substitute for K(+) at the basal membrane cotransporter. Bafilomycin (1 μM) dramatically inhibited fluid production by 85%, the [K(+)] of the secreted fluid was reduced by about 30% but the [Na(+)] was almost doubled. Furosemide, in common with other inhibitors of fluid secretion acting at the basal surface (ouabain and Rb(+)), caused a fall in intracellular [K] and a rise in [Na]. Bafilomycin, in common with N-ethyl maleimide, which acts at the apical surface, increased the intracellular [K] but did not affect the [Na].  相似文献   

6.
Summary Fluid transport and net fluxes of Na, K, Cl and HCO3 by guinea pig gallbladder were investigatedin vitro. A perfused gallbladder preparation was devised to simultaneously study unidirectional fluxes of22Na and36Cl. The net Cl flux exceeded the net Na flux during fluid absorption in the presence of HCO3. This Cl excess was counter-balanced by a net HCO3 secretion: a HCO3–Cl exchange. PGE1 reversed the direction of fluid transport and abolished the net Cl flux. The magnitude of the HCO3 secretion remained unchanged, but shifted from a HCO3–Cl exchange to a net secretion of NaHCO3 and KHCO3. Furosemide inhibited both the HCO3–Cl exchange and HCO3 secretion after PGE1 without influencing fluid absorption. Ouabain inhibited the HCO3–Cl exchange as well as fluid absorption; only the effect on the HCO3 secretion was entirely reversible. Secreted HCO3 appeared not to be derived from metabolic sources since HCO3 secretion was abolished in a HCO3-free bathing medium. HCO3 secretion was also dependent on the Na concentration of the bathing fluid. Three lines of evidence are presented in favor of an active HCO3 secretion in guinea pig gallbladder. HCO3 is secreted against: (i) a chemical gradient, (ii) an electrical gradient and (iii) the direction of fluid movement under control conditions.  相似文献   

7.
Summary Intracellular concentrations of Na, K, Cl ([Na], [K] and [Cl], respectively) and other elements were determined in isolated monkey eccrine sweat secretory coil cells using quantitative electron probe X-ray microanalysis of freeze dried cryosections. The validity of the methodology was partially supported by qualitative agreement of the X-ray microanalysis data with those obtained by micro-titration with a helium glow spectrophotometer. [Na], [K] and [Cl] of the cytoplasm were the same as those in the nucleus in both clear and dark cells. [Na], [K], and [Cl] of the clear cells were also the same as those of the dark cells at rest and after stimulation with methacholine (MCh), suggesting that these two cell types behave like a functional syncytium. MCh stimulation induced a pharmacologically specific, dose-dependent decrease in [K] and [Cl] (as much as 65%), and a 3.7-fold increase in [Na]. In myoepithelial cells, a similar change in [Na] and [K] was noted after MCh stimulation although the decrease in [Cl] was only 20%. The MCh-induced change in [Na], [K] and [Cl] was almost completely inhibited by removal of Ca2+ from the medium. 10–4 m bumetanide inhibited the MCh-induced increase in [Na], reduced the decrease in [K] by about 50%, but slightly augmented the MCh-induced decrease in [Cl]. 10–4 m ouabain increased [Na] and decreased [K] as did MCh; however, unlike MCh, ouabain increased [Cl] by 56% after 30 min of incubation. Thus the data may be best interpreted to indicate that Ca-dependent K efflux and (perhaps also Ca-dependent) Cl efflux are the predominat initial ionic movement in muscarinic cholinergic stimulation of the eccrine sweat secretory coils and that the ouabain-sensitive Na pump plays an important role in maintenance of intracellular ions and sweat secretion.  相似文献   

8.
The intracellular contents of sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), and chloride (Cl-) in rat hindlimb muscles (soleus, plantaris, white and red gastrocnemii) were measured by instrumental neutron activation analysis (INAA) and atomic absorption spectrophotometry (AAS). Muscle extracellular fluid volume (ECFV) was determined using [3H]mannitol, [14C]mannitol, [3H]polyethylene glycol (PEG, mol wt 900, PEG-900) or the chloride (Cl) method and intracellular fluid volume (ICFV) calculated. Rats were anesthetized with pentobarbital sodium. The muscles were biopsied, frozen in liquid nitrogen, freeze-dried, weighed, and transferred to vials for analysis. For a given muscle, ion contents measured by the two methods showed a consistent small difference which could not be explained. The PEG-900 space and the Cl method yielded a larger ECFV than did mannitol; it is concluded that PEG-900 and Cl overestimate ECFV. There were significant differences in total tissue water (TTW), ECFV, ICFV, and intracellular ion contents between the different muscle types. The fast glycolytic muscles (white gastrocnemius, plantaris) had lower TTW (758 ml/kg wet wt) and ECFV (6.5-8.5% TTW) but the highest ICFV; the soleus (slow oxidative fibers) had the highest TTW (766 ml/kg wet wt) and ECFV (10-15% TTW) but the lowest ICFV. The fast-twitch white gastrocnemius and plantaris muscles have a higher intracellular content of K+ and lower Na+ and Cl- than the slow-twitch soleus muscle. The technique of INAA provides a rapid and accurate means of determining intramuscular ion content in small samples of tissue.  相似文献   

9.
The total Na+ and both the intra- and extracellular Na+ content of excised rat and frog tissues was quantitated by 23Na NMR at 95.51 MHz. An external capillary containing 33 mM Na7[Dy(P3O10)2], resonating about 30 ppm upfield relative to the 0.00 ppm of the intracellular Na+, was inserted into the tissues. The capillary was calibrated against a concentration range of pure NaCl solution, for measurement of intracellular Na+, and against the same concentrations of NaCl solutions containing 4-6 mM K7[Dy(P3O10)2] in 50 mM histidine. Cl and 100 mM choline. Cl, for measurement of extracellular Na+. Spectra were recorded on tissues first in the absence of the shift reagent for determination of the total Na+. After addition of a K7[Dy(P3O10)2] solution to the sample, the 23Na spectra were recorded immediately so that data accumulation was completed within 15 min. Under these conditions, the extracellular Na+ resonated from 10 to 20 ppm upfield relative to the intracellular Na+, and no loss in the intensity of the extracellular Na+ resonance occurred due to the lability of dysprosium(III)tripolyphosphate (cf. Matwiyoff et al., Magn. Reson. Med. 3: 164, 1986). The intra- and extracellular Na+ content of the tissue was calculated from the integrated areas of the respective Na+ resonances and that of the calibrated capillary, from the known weight of the tissue, and from the known volumes of the solutions added.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The intracellular elemental concentrations of Na, K, P, S, Cl and Mg in the type 1 cells of Malpighian tubules of Locusta migratoria L. have been measured using electron probe X-ray microanalysis. The effects of in vitro stimulation with 1 mM cAMP and corpora cardiaca extract (CC-extract) on the elemental concentrations have been quantified. The distribution of elements, particularly Na, K and Cl is not homogeneous in control cells, and concentration gradients exist within the cytoplasm. Dibutyryl-cAMP (DB-cAMP) caused a decrease in [K]i without disrupting the gradient which increased from the basal to the apical surface, the apical [Na]i was increased as was the [Cl]i. In contrast, in vitro application of CC-extract did not cause changes to the intracellular elemental composition as compared with control cells These data are consistent with the interpretation that exogenous cAMP only partially activated the full stimulatory response of Malpighian tubule cells observed with CC-extract. The changes observed in the density and elemental composition of the `dark bodies' in response to DB-cAMP and CC-extract stimulation suggest that these structures have a role in the ionic economy of Malpighian tubule cells. Accepted: 6 April 1999  相似文献   

11.
Regulation of intracellular pH in human neutrophils   总被引:16,自引:4,他引:12       下载免费PDF全文
The intracellular pH (pHi) of isolated human peripheral blood neutrophils was measured from the fluorescence of 6-carboxyfluorescein (6-CF) and from the equilibrium distribution of [14C]5,5-dimethyloxazolidine -2,4-dione (DMO). At an extracellular pH (pHo) of 7.40 in nominally CO2-free medium, the steady state pHi using either indicator was approximately 7.25. When pHo was suddenly raised from 7.40 to 8.40 in the nominal absence of CO2, pHi slowly rose by approximately 0.35 during the subsequent hour. A change of similar magnitude in the opposite direction occurred when pHo was reduced to 6.40. Both changes were reversible. Intrinsic intracellular buffering power, determined by using graded pulses of CO2 or NH4Cl, was approximately 50 mM/pH over the pHi range of 6.8-7.9. The course of pHi obtained from the distribution of DMO was followed during and after imposition of intracellular acid and alkaline loads. Intracellular acidification was brought about either by exposing cells to 18% CO2 or by prepulsing with 30 mM NH4Cl, while pHo was maintained at 7.40. In both instances, pHi (6.80 and 6.45, respectively) recovered toward the control value at rates of 0.029 and 0.134 pH/min. These rates were reduced by approximately 90% either by 1 mM amiloride or by replacement of extracellular Na with N-methyl-D-glucamine. Recovery was not affected by 1 mM SITS or by 40 mM alpha-cyano-4-hydroxycinnamate (CHC), which inhibits anion exchange in neutrophils. Therefore, recovery from acid loading is probably due to an exchange of internal H for external Na. Intracellular alkalinization was achieved by exposing the cells to 30 mM NH4Cl or by prepulsing with 18% CO2, both at a constant pHo 7.40. In both instances, pHi, which was 7.65 and 7.76, respectively, recovered to the control value. The recovery rates (0.033 and 0.077 pH/min, respectively) were reduced by 80-90% either by 40 mM CHC or by replacement of extracellular Cl with p-aminohippurate (PAH). SITS, amiloride, and ouabain (0.1 mM) were ineffective.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The methodology has been developed to measure Cl activity and transport in cultured cells grown on a monolayer using the entrapped Cl-sensitive fluorophore 6-methoxy-N-[3-sulfopropyl] quinolinium (SPQ). The method was applied to a renal epithelial cell line, LLC-PKI, and a nonepithelial cell line, Swiss 3T3 fibroblasts. SPQ was nontoxic to cells when present for greater than h in the culture media. To load with SPQ (5 mM), cells were made transiently permeable by exposure to hypotonic buffer (150 mOsm, 4 min). Intracellular fluorescence was monitored continuously by epifluorescence microscopy using low illumination intensity at 360 +/- 5 nm excitation wavelength and photomultiplier detection at greater than 410 nm. Over 60 min at 37 degrees C, there was no photobleaching and less than 10% leakage of SPQ out of cells; intracellular SPQ fluorescence was uniform. SPQ fluorescence was calibrated against intracellular [Cl] using high K solutions containing the ionophores nigericin and tributyltin. The Stern-Volmer constant (Kq) for quenching of intracellular SPQ by Cl was 13 M-1 for fibroblasts and LLC-PKl cells. In the absence of Cl, SPQ lifetime was 26 ns in aqueous solution and 3.7 +/- 0.6 ns in cells, showing that the lower Kq in cells than in free solution (Kq = 118 M-1) was due to SPQ quenching by intracellular anions. To examine Cl transport mechanisms, the time course of intracellular [Cl] was measured in response to rapid Cl addition and removal in the presence of ion or pH gradients. In fibroblasts, three distinct Cl transporting systems were identified: a stilbeneinhibitable Cl/HCO3 exchanger, a furosemide-sensitive Na/K/2Cl cotransporter, and a Ca-regulated Cl conductance. These results establish a direct optical method to measure intracellular [Cl] continuously in cultured cells.  相似文献   

13.
The objective of this study on frog skin was to examine correlations between transepidermal active Na-transport and intracellular [Na]c, [K]c, [Cl]c homeostasis. Isolated, whole skins, and "split skins" were used in measurements of short-circuit current (SCC) and open skin potential (PD). Water and ion contents were estimated on split skins. Absolute [Na]c and [K]c varied over the range of 18 to 46, and 113 to 80 mM, respectively (Figure 7), but a complementary relationship existed between Na and K, such that [Na]c + [K]c remained approximately equal to 129 mM. Average values for [Na]c and [K]c were approximately equal to 31 and approximately equal to 96 mM, respectively. [Cl]c remained constant at approximately equal to 38 mM. This complementary relationship does not seem to be an artifact, caused by collagenase, used in the preparation of split skins. Whole skins and split skins in Ringer's solution, when treated with fluoroacetate (FAc), ouabain (Ou), or vanadate (Va) over wide ranges of concentrations, showed that FAc greatly depressed the SCC and the PD, without changing [Na]c, [K]c, [Cl]c. FAc acted only from the corium side of the skin. The decreasing SCC remained a Na-current, as in control skins. By comparison, such a separation of cellular functions could not be established with Ou, or Va. These inhibitors either affected SCC, PD, and cellular ion concentration, or they had no effect on any of these parameters. The complementary relationship between [Na]c and [K]c, with [Cl]c remaining again at approximately equal to 38 mM, was also found in tissues exposed to inhibitors. These results indicate that transcellular active Na transport and electrolyte homeostasis are not always rigidly coupled, suggesting that these processes may not be uniformly distributed within the epithelial cells, or among the interconnected cell layers of the frog skin epidermis.  相似文献   

14.
The potential differences across the tonoplast and plasmalemmamembranes have been measured in the single cells of Nitellatranslucens, the cells being immersed in an artificial pondwater (composition: NaCl 1.0 mM., KC1 0.1 mM., CaCl2, 0.1 mM.).The potential of the cytoplasm is –138 m V with respectto the bathing medium and –18 mV with respect to the vacuole.The concentrations of Na, K, and Cl have been measured in thetwo cell fractions. The concentrations in the flowing cytoplasmare: Na 14 mM., K 119 mM., and Cl 65 mM.; the vacuolar concentrationsare: Na 65 mM., K 75 mM.,and Cl 160 mM. The observed potential differences across the two membranesare compared with the Nernst potentials for all three ions.This analysis shows that all three ions are actively transportedat the plasmalemma: Na is pumped outwards while K and Cl arepumped inwards. At the tonoplast Na is pumped into the vacuolewhile K and Cl are close to electrochemical equilibrium. The inhibitor, ouabain, has no effect on the cell resting potential.  相似文献   

15.
The composition and concentration of salts secreted by the salt glands of Tamarix aphylla L. grown under controlled nutrient conditions were determined. Eight ions, Na, K, Mg, Ca, Cl, NO3, HCO3, and SO4, constituted 99 % + of the dry weight of salts secreted by plants grown on half-strength Hoagland's solution. The divalent cations Mg and Ca accounted for most of the cations; HCO3 comprised about 60 % of the anions. The micronutrients B, Mn, Cu, Zn, and Mo were present in enriched concentrations in the secretion. The composition of the secretions was highly dependent on the composition of the root environment. The predominating cation in the saline culture solutions was also the predominant cation secreted. The accompanying anion in the culture solution influences the cation composition of the secreted salt. The concentration of the salt gland secretion averaged 0.5n , a 50-fold increase in concentration over the nutrient solution in which the plants were grown.  相似文献   

16.
The jejunal basolateral Cl/HCO3 exchanger is modulated by two Na-dependent regulatory sites located on the inner and outer membrane surfaces. The aim of this work was to focus on the interaction between the anion exchanger and intracellular or extracellular sodium. Uptake studies, performed using basolateral membrane vesicles, provided kinetic parameters as a function of outside or inside Na concentration. The intracellular Na-sensitive modifier site seems to be primarily involved in the modulation of the Cl/HCO3 exchanger.  相似文献   

17.
Field surveys of the distribution of mayfly nymphs suggest that Stenonema femoratum are more acid-sensitive than Leptophlebia cupida. To assess whether this apparent difference in sensitivity of nymphs is reflected in differences in the degree of whole-body loss of [Na], [Cl], [Ca] or [K] under laboratory conditions, we exposed nymphs of both species to low pH for 96–192 h in soft water ([Ca] = 0.1 mM). Although mortality and loss of whole-body [Na] and [Cl] occurred in both species at pH 3.5, unexpectedly they were considerably greater in L. cupida than in S. femoratum. Ion loss was not size related within the range of nymphal weights used (2–14 mg dry wt) for S. femoratum. Exposure to the environmentally more common pH 4.5 had no effect on whole-body [Na] and [Cl] or on mortality in either species. However, in L. cupida, molting by nymphs increased at both pH 3.5 and 4.5. A decrease in whole-body [Ca] occurred, and the loss of whole-body [Na] and [Ca] at pH 3.5 appeared to cease following the period of molting. In S. femoratum no molting or Ca loss occurred and whole-body [Na] and [Cl] decreased between 96 and 192 h exposures.  相似文献   

18.
Na/K pump current was determined between -140 and +60 mV as steady-state, strophanthidin-sensitive, whole-cell current in guinea pig ventricular myocytes, voltage-clamped and internally dialyzed via wide-tipped pipettes. Solutions were designed to minimize all other components of membrane current. A device for exchanging the solution inside the pipette permitted investigation of Na/K pump current-voltage (I-V) relationships at several levels of pipette [Na] [( Na]pip) in a single cell; the effects of changes in external [Na] [( Na]o) or external [K] [( K]o) were also studied. At 50 mM [Na]pip, 5.4 mM [K]o, and approximately 150 mM [Na]o, Na/K pump current was steeply voltage dependent at negative potentials but was approximately constant at positive potentials. Under those conditions, reduction of [Na]o enhanced pump current at negative potentials but had little effect at positive potentials: at zero [Na]o, pump current was only weakly voltage dependent. At 5.4 mM [K]o and approximately 150 mM [Na]o, reduction of [Na]pip from 50 mM scaled down the sigmoid pump I-V relationship and shifted it slightly to the right (toward more positive potentials). Pump current at 0 mV was activated by [Na]pip according to the Hill equation with best-fit K0.5 approximately equal to 11 mM and Hill coefficient nH approximately equal to 1.4. At zero [Na]o, reduction of [Na]pip seemed to simply scale down the relatively flat pump I-V relationship: Hill fit parameters for pump activation by [Na]pip at 0 mV were K0.5 approximately equal to 10 mM, nH approximately equal to 1.4. At 50 mM [Na]pip and high [Na]o, reduction of [K]o from 5.4 mM scaled down the sigmoid I-V relationship and shifted it slightly to the right: at 0 mV, K0.5 approximately equal to 1.5 mM and nH approximately equal to 1.0. At zero [Na]o, lowering [K]o simply scaled down the flat pump I-V relationships yielding, at 0 mV, K0.5 approximately equal to 0.2 mM, nH approximately equal to 1.1. The voltage-independent activation of Na/K pump current by both intracellular Na ions and extracellular K ions, at zero [Na]o, suggests that neither ion binds within the membrane field. Extracellular Na ions, however, seem to have both a voltage-dependent and a voltage-independent influence on the Na/K pump: they inhibit outward Na/K pump current in a strongly voltage-dependent fashion, with higher apparent affinity at more negative potentials (K0.5 approximately equal to 90 mM at -120 mV, and approximately 170 mM at -80 mV), and they compete with extracellular K ions in a seemingly voltage-independent manner.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Summary Total body water decreased significantly in terrapins exposed to sea water (SW). Although the intracellular fluid decreased somewhat upon SW exposure, the decline in extracellular fluid was almost twice as great. Under conditions of voluntary drinking after salt loading, terrapins substantially increased the volume of the extracellular fluid while maintaining the intracellular fluid near the freshwater (FW) control levels. FW terrapins were consistently heavier than animals of the same plastron length exposed to SW. Thus expression of body fluid volumes as ml/cm plastron length rather than as % body weight is necessary to correct for the loss of total body water with progressive dehydration. Fasted terrapins in SW lost weight at 0.32% weight/day, whereas the rate in FW was 0.21%/day. Water influx and efflux in SW were 0.17 and 0.16 ml/100 g·h respectively. When the efflux was increased by the calculated value for unmeasured respiratory loss, it exceeded the influex by 0.01 ml/100 g·h. Consequently the net water loss determined with radiotracers (equivalent to 0.24% weight/day) was similar to the difference between the weight losses in SW and FW (0.11%/day). Partitioning studies indicated that the majority of water exchange between the terrapin and SW occurs through the integument. Terrapins in SW underwent a concentration of the body fluids, most of which can be attributed to water loss, not electrolyte gain. The rates of Na influx and efflux were quite low (usually ranging from 6–10 moles/100 g·h). In two terrapins the injection of NaCl loads resulted in eight- to 19-fold increases in Na efflux. The uptake of Na from SW occurred orally. The skin was virtually impermeable to Na. The salt gland and possibly the cloaca were the major routes of Na efflux. The injection of NaCl loads resulted in an increase in cephalic Na excretion from a mean of 3.2 moles/100 g·h to 32.5 moles/100 g·h. Terrapins in SW exhibited a significant increase in bladder urine [K] over the FW controls. There was a direct relationship between plasma [Na], urine [K], and lachrymal salt gland Na–K ATPase content. In comparing SW terrapins with FW painted turtles (Chrysemys) exposed to SW radiotracer studies demonstrated a similarity in Na influx, but there was at least a four-fold increase in water exchange in the painted turtle. It seems likely that the skins of many aquatic reptiles (marine, estuarine and FW) are impermeable to Na but differ markedly in water permeability.  相似文献   

20.
Our purpose was to study the interaction between Na(+) content and fluid volume on rehydration (RH) and restoration of fluid spaces and cardiovascular (CV) function. Ten men completed four trials in which they exercised in a 35 degrees C environment until dehydrated by 2. 9% body mass, were rehydrated for 180 min, and exercised for an additional 20 min. Four RH regimens were tested: low volume (100% fluid replacement)-low (25 mM) Na(+) (LL), low volume-high (50 mM) Na(+) (LH), high volume (150% fluid replacement)-low Na(+) (HL), and high volume-high Na(+) (HH). Blood and urine samples were collected and body mass was measured before and after exercise and every hour during RH. Before and after the dehydration exercise and during the 20 min of exercise after RH, cardiac output was measured. Fluid compartment (intracellular and extracellular) restoration and percent change in plasma volume were calculated using the Cl(-) and hematocrit/Hb methods, respectively. RH was greater (P < 0.05) in HL and HH (102.0 +/- 15.2 and 103.7 +/- 14.7%, respectively) than in LL and LH (70.7 +/- 10.5 and 75.9 +/- 6.3%, respectively). Intracellular RH was greater in HL (1.12 +/- 0.4 liters) than in all other conditions (0.83 +/- 0.3, 0.69 +/- 0.2, and 0.73 +/- 0.3 liter for LL, LH, and HH, respectively), whereas extracellular RH (including plasma volume) was greater in HL and HH (1.35 +/- 0.8 and 1.63 +/- 0.4 liters, respectively) than in LL and LH (0.83 +/- 0.3 and 1.05 +/- 0.4 liters, respectively). CV function (based on stroke volume, heart rate, and cardiac output) was restored equally in all conditions. These data indicate that greater RH can be achieved through larger volumes of fluid and is not affected by Na(+) content within the range tested. Higher Na(+) content favors extracellular fluid filling, whereas intracellular fluid benefits from higher volumes of fluid with lower Na(+). Alterations in Na(+) and/or volume within the range tested do not affect the degree of restoration of CV function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号