首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initiation of translation in prokaryotes and eukaryotes.   总被引:74,自引:0,他引:74  
M Kozak 《Gene》1999,234(2):187-208
  相似文献   

2.
Translation initiation in bacteria involves a stochastic binding mechanism in which the 30S ribosomal subunit first binds either to mRNA or to initiator tRNA, fMet-tRNA(f)(Met). Leaderless lambda cI mRNA did not form a binary complex with 30S ribosomes, which argues against the view that ribosomal recruitment signals other than a 5'-terminal start codon are essential for translation initiation of these mRNAs. We show that, in Escherichia coli, translation initiation factor 2 (IF2) selectively stimulates translation of lambda cI mRNA in vivo and in vitro. These experiments suggest that the start codon of leaderless mRNAs is recognized by a 30S-fMet-tRNA(f)(Met)-IF2 complex, an intermediate equivalent to that obligatorily formed during translation initiation in eukaryotes. We further show that leaderless lambda cI mRNA is faithfully translated in vitro in both archaebacterial and eukaryotic translation systems. This suggests that translation of leaderless mRNAs reflects a fundamental capability of the translational apparatus of all three domains of life and lends support to the hypothesis that the translation initiation pathway is universally conserved.  相似文献   

3.
Selection of the correct start codon during initiation of translation on the ribosome is a key event in protein synthesis. In eukaryotic initiation, several factors have to function in concert to ensure that the initiator tRNA finds the cognate AUG start codon during mRNA scanning. The two initiation factors eIF1 and eIF1A are known to provide important functions for the initiation process and codon selection. Here, we have used molecular dynamics free energy calculations to evaluate the energetics of initiator tRNA binding to different near-cognate codons on the yeast 40S ribosomal subunit, in the presence and absence of these two initiation factors. The results show that eIF1 and eIF1A together cause a relatively uniform and high discrimination against near-cognate codons. This works such that eIF1 boosts the discrimination against a first position near-cognate G-U mismatch, and also against a second position A-A base pair, while eIF1A mainly acts on third codon position. The computer simulations further reveal the structural basis of the increased discriminatory effect caused by binding of eIF1 and eIF1A to the 40S ribosomal subunit.  相似文献   

4.
All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.  相似文献   

5.
6.
Eukaryotic initiation factor eIF1 and the functional C-terminal domain of prokaryotic initiation factor IF3 maintain the fidelity of initiation codon selection in eukaryotes and prokaryotes, respectively, and bind to the same regions of small ribosomal subunits, between the platform and initiator tRNA. Here we report that these nonhomologous factors can bind to the same regions of heterologous subunits and perform their functions in heterologous systems in a reciprocal manner, discriminating against the formation of initiation complexes containing codon-anticodon mismatches. We also show that like IF3, eIF1 can influence initiator tRNA selection, which occurs at the stage of ribosomal subunit joining after eIF5-induced hydrolysis of eIF2-bound GTP. The mechanisms of initiation codon and initiator tRNA selection in prokaryotes and eukaryotes are therefore unexpectedly conserved and likely involve related conformational changes induced in the small ribosomal subunit by factor binding. YciH, a prokaryotic eIF1 homologue, could perform some of IF3's functions, which justifies the possibility that YciH and eIF1 might have a common evolutionary origin as initiation factors, and that IF3 functionally replaced YciH in prokaryotes.  相似文献   

7.
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage λ, with a 4-thiouridine (4S-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5′-AUG is required for stable binding. Furthermore, the addition of a 5′-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs.  相似文献   

8.
9.
Shao ZQ  Zhang YM  Feng XY  Wang B  Chen JQ 《PloS one》2012,7(3):e33547

Background

In yeast coding sequences, once a particular codon has been used, subsequent occurrence of the same amino acid tends to use codons sharing the same tRNA. Such a phenomenon of co-tRNA codons pairing bias (CTCPB) is also found in some other eukaryotes but it is not known whether it occurs in prokaryotes.

Methodology/Principal Findings

In this study, we focused on a total of 773 bacterial genomes to investigate their synonymous codon pairing preferences. After calculating the actual frequencies of synonymous codon pairs and comparing them with their expected values, we detected an obvious pairing bias towards identical codon pairs. This seems consistent with the previously reported CTCPB phenomenon, since identical codons are certainly read by the same tRNA. However, among co-tRNA but non-identical codon pairs, only 22 were often found overrepresented, suggesting that many co-tRNA codons actually do not preferentially pair together in prokaryotes. Therefore, the previously reported co-tRNA codons pairing rule needs to be more rigorously defined. The affinity differences between a tRNA anticodon and its readable codons should be taken into account. Moreover, both within-gene-shuffling tests and phylogenetic analyses support the idea that translational selection played an important role in shaping the observed synonymous codon pairing pattern in prokaryotes.

Conclusions

Overall, a high level of synonymous codon pairing bias was detected in 73% investigated bacterial species, suggesting the synonymous codon ordering strategy has been prevalently adopted by prokaryotes to improve their translational efficiencies. The findings in this study also provide important clues to better understand the complex dynamics of translational process.  相似文献   

10.
Translation elongation is an accurate and rapid process, dependent upon efficient juxtaposition of tRNAs in the ribosomal A- and P-sites. Here, we sought evidence of A- and P-site tRNA interaction by examining bias in codon pair choice within open reading frames from a range of genomes. Three distinct and marked effects were revealed once codon and dipeptide biases had been subtracted. First, in the majority of genomes, codon pair preference is primarily determined by a tetranucleotide combination of the third nucleotide of the P-site codon, and all 3 nt of the A-site codon. Second, pairs of rare codons are generally under-used in eukaryotes, but over-used in prokaryotes. Third, the analysis revealed a highly significant effect of tRNA-mediated selection on codon pairing in unicellular eukaryotes, Bacillus subtilis, and the gamma proteobacteria. This was evident because in these organisms, synonymous codons decoded in the A-site by the same tRNA exhibit significantly similar P-site pairing preferences. Codon pair preference is thus influenced by the identity of A-site tRNAs, in combination with the P-site codon third nucleotide. Multivariate analysis identified conserved nucleotide positions within A-site tRNA sequences that modulate codon pair preferences. Structural features that regulate tRNA geometry within the ribosome may govern genomic codon pair patterns, driving enhanced translational fidelity and/or rate.  相似文献   

11.
Initiation of translation involves recognition of the start codon by the initiator tRNA in the 30S subunit. To investigate the role of ribosomal RNA (rRNA) in this process, we isolated a number of 16S rRNA mutations that increase translation from the non-canonical start codon AUC. These mutations cluster to distinct regions that overlap remarkably well with previously identified class III protection sites and implicate both IF1 and IF3 in start codon selection. Two mutations map to the 790 loop and presumably act by inhibiting IF3 binding. Another cluster of mutations surrounds the conserved A1413∘G1487 base pair of helix 44 in a region known to be distorted by IF1 and IF3. Site-directed mutagenesis in this region confirmed that this factor-induced rearrangement of helix 44 helps regulate initiation fidelity. A third cluster of mutations maps to the neck of the 30S subunit, suggesting that the dynamics of the head domain influences translation initiation. In addition to identifying mutations that decrease fidelity, we found that many P-site mutations increase the stringency of start codon selection. These data provide evidence that the interaction between the initiator tRNA and the 30S P site is tuned to balance efficiency and accuracy during initiation.  相似文献   

12.
AUG is the only initiation codon in eukaryotes   总被引:9,自引:0,他引:9  
An analysis of mutants of the yeast Saccharomyces cerevisiae indicates that AUG is the sole codon capable of initiating translation of iso-1-cytochrome c. This result with yeast and the sequence results of numerous eukaryotic genes indicate that AUG is the only initiation codon in eukaryotes; in contrast, results with Escherichia coli and bacteriophages indicate that both AUG and GUG are initiation codons in prokaryotes. The difference can be explained by the lack of the t6 A hypermodified nucleoside (N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]threonine) in prokaryotic initiator tRNA and its presence in eukaryotic initiator tRNA.  相似文献   

13.
Ribosome profiling data report on the distribution of translating ribosomes, at steady‐state, with codon‐level resolution. We present a robust method to extract codon translation rates and protein synthesis rates from these data, and identify causal features associated with elongation and translation efficiency in physiological conditions in yeast. We show that neither elongation rate nor translational efficiency is improved by experimental manipulation of the abundance or body sequence of the rare AGG tRNA. Deletion of three of the four copies of the heavily used ACA tRNA shows a modest efficiency decrease that could be explained by other rate‐reducing signals at gene start. This suggests that correlation between codon bias and efficiency arises as selection for codons to utilize translation machinery efficiently in highly translated genes. We also show a correlation between efficiency and RNA structure calculated both computationally and from recent structure probing data, as well as the Kozak initiation motif, which may comprise a mechanism to regulate initiation.  相似文献   

14.
The molecular mechanism with which an appropriate AUG codon is selected as the start site for translational initiation by eukaryotic ribosomes is not known. By using a cell-free translation system, small RNA molecules containing single AUG codons, surrounded by various nucleotide sequences, were tested for their abilities to interfere with the translation of a reporter mRNA. RNAs containing the AUG in an ACCAUGG context (Kozak consensus sequence) were able to inhibit translation of the reporter mRNA. In contrast, RNAs containing the AUG in a less favorable context for start site selection (for example, CAGAUGG) had no effect on the translation of the reporter mRNA. The effect mediated by the ACCAUGC-containing RNAs was not due to sequestration of ribosomal subunits or to particular structural features in these RNAs. To identify potential trans-acting factors that might be preferentially bound by ACCAUGG-containing RNAs, ACCAUGG- and CAGAUGC-containing RNAs with a single 4-thiouridine residue at the AUG were incubated with partially fractionated extracts, and AUG-binding proteins were identified after irradiation of the complexes with UV light and subsequent analysis by gel electrophoresis. The analysis (of such complexes in competition experiments revealed that proteins, approximately 50 and 100 kDa in size, were found to bind directly at the AUG codon embedded in the ACCAUGG motif. One of these proteins has been identified as the La autoantigen. These findings indicate that trans-acting factors may play a role in AUG start site selection during translational initiation.  相似文献   

15.
In the presence of plant tRNAs the full-length translation product of alfalfa mosaic virus RNA 1 is produced in rabbit reticulocytes only at low mRNA concentration. At higher mRNA concentration translation is restricted to the 5' half of RNA 1. At high mRNA concentration the full-length product can be formed when additional plant tRNA and glutamine are supplied to the translation mixture. In contrast, in the presence of yeast or calf liver tRNA the translation pattern of alfalfa mosaic virus RNA 1 always results in the synthesis of the full-length product. Pulse-chase experiments in the presence of plant tRNAs show that the ribosomes pause at several positions in the 5' half of RNA 1. The pausing time is different at the different 'halting places'. Protein synthesis is resumed upon addition of glutamine, even when the addition is delayed for more than 3 h after the start of protein synthesis. Only one tRNA species, purified from wheat germ or tobacco, could promote full-length translation of RNA 1. This tRNA can be charged with glutamine. Analysis of the position of glutamine codons on RNA 1 shows a correlation between the positions of the CAA codons and the halting places of the ribosomes. The CAA codon (for any other codon) on its own cannot be responsible for the pausing of the ribosomes, since a variety of RNAs, known to contain all sense codons, are translated efficiently in rabbit reticulocyte lysates in the presence of plant tRNAs. Apparently other elements can restrict decoding of normal codons during protein chain elongation.  相似文献   

16.
The Neurospora crassa arg-2 upstream open reading frame (uORF) plays a role in negative arginine-specific translational regulation. Primer extension inhibition analyses of arg-2 uORF-containing RNA translated in a cell-free system in which arginine-specific regulation was retained revealed "toeprints" corresponding to ribosomes positioned at the uORF initiation and termination codons and at the downstream initiation codon. At high arginine concentrations, the toeprint signal corresponding to ribosomes at the uORF termination codon rapidly increased; a new, broad toeprint that represents additional ribosomes stalled on the uORF appeared 21 to 30 nucleotides upstream of this site; and the toeprint signal corresponding to ribosomes at the downstream initiation codon decreased. These data suggest that arginine increases ribosomal stalling and thereby decreases translation from the downstream initiation codon.  相似文献   

17.
It is well known that protein synthesis in ribosomes on mRNA requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. The synthesis is assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by its anticodon is known. The termination factors are thought to do this. We discovered in the large ribosomal RNA two regions that, like tRNAs, contain the anticodon hairpin, but with triplets complementary to stop codons. By analogy, we called them termination tRNAs (Ter-tRNA1 and Ter-tRNA2), though they transport no amino acids, and suggested them to directly recognize stop codons. The termination factors only condition such a recognition, making it specific and reliable (of course, they fulfill the hydrolysis of the ester bond between the polypeptide and tRNA). A strong argument in favor of our hypothesis came from vertebrate mitochondria. They acquired two new stop codons, AGA and AGG (in the standard code, they are two out of six arginine codons). We revealed that the corresponding anticodons appear in Ter-tRNA1.  相似文献   

18.
Ivanov  V. I.  Beniaminov  A. D.  Mikheev  A. N.  Minyat  E. E. 《Molecular Biology》2001,35(4):614-622
It is well known that protein synthesis in ribosomes on mRNA requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. The synthesis is assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by its anticodon is known. The termination factors are thought to do this. We discovered in the large ribosomal RNA two regions that, like tRNAs, contain the anticodon hairpin, but with triplets complementary to stop codons. By analogy, we called them termination tRNAs (Ter-tRNA1 and Ter-tRNA2), though they transport no amino acids, and suggested them to directly recognize stop codons. The termination factors only condition such recognition to make it specific and reliable (of course, they fulfill the hydrolysis of the ester bond between the polypeptide and tRNA). A strong argument in favor of our hypothesis came from vertebrate mitochondria. They acquired two new stop codons, AGA and AGG (in the standard code, they are two out of six arginine codons). We revealed that the corresponding anticodons appear in Ter-tRNA1.  相似文献   

19.
In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.  相似文献   

20.
The involvement of nucleotides adjacent to the termination codons in tRNA during the suppression of termination has been formulated as the 'context theory' by Bossi and Roth (1980) [Nature (Lond.) 286, 123-127]. The finding that U-U-G functions as an initiator codon has revived the discussion on the participation of the nucleotides flanking the initiator triplet in the decoding of initiator tRNA (context theory of initiation by the ribosome). We compared the capacity of oligonucleotides cognate to the anticodon loop of formylmethionine tRNA, such as A-U-G, A-U-G-A and U-A-U-G-A, to enhance the formation of the 30-S and 70-S ribosomal initiation complexes. Three different methods were used to determine the apparent binding constants and the stoichiometries of the respective complexes: adsorption of the complexes to nitrocellulose filters, equilibrium dialysis, and velocity sedimentation. We found that in the 30-S ribosomal initiation complex and in the presence of initiation factor 2 and GTP, formylmethionyl-tRNA is preferentially decoded by more than three mRNA bases. With the 70-S ribosome, however, once initiation factor 2 had been released, A-U-G represented the most effective codon to direct the formylmethionyl-tRNA to the peptidyl site. An extended initiator sequence may either give additional stability to the 30-S initiation complex or may allow for an ambiguity by one base pair in the decoding of the initiator tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号