首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 139 毫秒
1.
Many species are becoming active earlier in the season as the climate becomes warmer. In parallel to phenological responses to climate change, many species have also been affected by habitat changes due to anthropogenic land use. As habitat type can directly affect microclimatic conditions, concurrent changes in climate and habitat could have interacting effects on the phenology of species. Temperature‐related shifts in phenology, however, have mostly been studied independent of habitat types. Here, I used long‐term data from a highly standardized monitoring program with 519 transects to study how phenology of butterflies is affected by ambient temperature and habitat type. I compared forests, agricultural areas and settlements, reflecting three major land use forms, and considered butterfly species that were observed in all three of these habitats. Seasonal appearance of the butterflies was affected both by the ambient temperature and the habitat type. As expected, warmer temperatures led to an overall advancement of the appearance and flight period of most species. Surprisingly, however, phenology of species was delayed in settlement habitats, even though this habitat type is generally associated with higher temperatures. A possible explanation is dispersal among habitat types, such that source–sink effects affect local phenology. When there is little productivity in settlement areas, observed butterflies may have immigrated from forest or agricultural habitats and thus appear later in settlements. My findings suggest that a spillover of individuals among habitats may affect phenology trends and indicate that phenological studies need to be interpreted in the context of habitat types. This becomes especially important when defining strategies to prevent or mitigate effects of climate and land‐use changes on phenology and abundance of species.  相似文献   

2.
The purpose of this study was to correlate the activity and habitat use of a large and ecologically specialized mammal ( Myrmecophaga tridactyla ) with the time of day and minimum daily temperature in Brazil's Pantanal wetland. Seven giant anteaters were fitted with very high frequency (VHF) radio transmitters and monitored from March to December 2001. The animal's state of activity or rest, time and ambient temperature were recorded in different patches of the study site, which were covered by a mosaic of vegetation types and several ponds. Whenever a giant anteater was inside a forest patch, the temperature inside and outside of the patch was also recorded. The temperatures throughout the day were recorded by the meteorological station at the study site. The period of greatest activity of giant anteaters started at 18:00 h on hot days, but whenever the daily minimum temperature declined, the species' activity began earlier. Giant anteaters use predominantly forest habitats for rest and open habitats for activity. The forest patches work as a temperature buffer, because they are cooler than the matrix of open habitats during the hot hours of the day and warmer than the matrix during the cold hours. Although the giant anteater is known to be associated with open habitats, this study indicates the need of preserving forest patches for the conservation of this species.  相似文献   

3.
Species may circumvent the impacts of climate warming if the habitats they use reduce ambient temperature. In this study, we identified which frog species from a tropical montane rain forest in the Philippines may be vulnerable to climate warming. To do so, we selected five anuran species that utilize four breeding habitats and identified the sensitivity and exposure of tadpoles and direct‐developer eggs to heat by measuring their critical thermal maximums (CTmax) and the habitat‐specific temperatures they experience. Our study species included two direct‐developer frogs—one species that lays its eggs on exposed leaves, and another that lays its eggs in ferns—and three species that produce aquatic free‐swimming tadpoles—two stream breeders, and one phytotelm (tree hole) breeder. We compared thermal tolerances derived from microclimates of breeding habitats with tolerances derived from macroclimate (i.e., non‐buffered air temperature taken from the rain forest canopy). We also examined whether differences in CTmax existed across life‐history stages (egg, metamorph/young‐of‐year, and adult) for the two direct‐developer frog species. Habitats buffered ambient temperature and expanded thermal tolerances of all frog species. We found that direct‐developers, however, are more vulnerable to increased temperatures than aquatic breeders—indicated by their high sensitivity to temperature, and exposure to high temperatures. Direct‐developer eggs were more sensitive to warming than both metamorph and adult life‐history stages. Thermally buffered microhabitats may represent the only protection against current and impending climate warming. Our data highlight the importance of considering sensitivity and exposure in unison when deciphering warming vulnerability of frogs.  相似文献   

4.
Ectothermic body temperatures affect organismal performances and presumably fitness, and are strongly influenced by the thermal environment. Therefore, the processes of colonization of novel thermal habitats by lizards might involve changes in thermal preferences, performance curves (reaction norms) and field activity temperatures. According to theory based on optimality analysis, diverse aspects of the thermal biology of vertebrate ectotherms should co-evolve as to maximize performance at the temperature range more often experienced by animals in the field. One corollary of this premise is that derived lizard clades that experienced a significant shift in thermal ecology, in comparison with the ancestral condition, should prefer and select temperatures in a thermal gradient similar to those experienced in nature. Here we report an analysis of the premise stated before. Specifically, we verify whether or not Tropidurinae species from three major Brazilian habitats (the Rainforests, the semi-arid Caatingas and the Cerrados, a Savannah-like biome) differ in thermal ecology and thermoregulatory behavior. The Caatinga is believed to be the ancestral habitat of this sub-family, and differences are expected because species from semi-arid habitats usually exhibit high body temperatures for lizards, whereas forest specialists might be thermoconformers and active at low temperatures. We also compared selected temperatures in the laboratory by species from the two open habitats (Caatingas and Cerrados). Data were analyzed using both conventional and phylogenetic analysis tools. Although species from Caatingas exhibited higher activity temperatures in nature than those from Cerrados, mean selected temperatures were similar between ecological groups. Phylogenetic analyses confirmed these findings and evidenced large␣evolutionary divergence in field activity temperatures between sister species from different␣open habitats without coupled divergence in selected temperatures. Therefore, thermoregulatory behavior and ecological parameters did not evolve similarly during the colonization of contrasting open habitats by Tropidurinae.  相似文献   

5.
Similarities in general size, geometry, lifestyle, and environment mean that certain energetic constraints are common and peculiar to Holarctic tree squirrels as a group. Holarctic tree squirrels are relatively small, diurnal mammals which, in association with their food niche, maintain activity throughout the autumn-winter period. Despite this, they exhibit no major morphological or physiological adaptations to minimize energy expenditure at low temperatures; on the contrary, both basal metabolism and conductance are higher than expected on the grounds of physical size. When they are active energy expenditure is therefore strongly influenced by effective ambient temperature for these species when active in their natural autumn-winter environments. Nest use allows near-basal metabolism at most natural ambient temperatures. The balance of economical inactivity against feeding rewards offset by cold exposure must therefore be a crucial aspect of the lifestyle of these squirrels.  相似文献   

6.
Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity.  相似文献   

7.
Golden spiny mice (Acomys russatus) living in the Judean desert are exposed to extended periods of food and water shortage. We investigated their thermal and metabolic response to three weeks of 50 % food reduction at ambient temperatures of 23, 27, 32 and 35 °C by long term records of metabolic rate and body temperature in the laboratory. At all ambient temperatures, A. russatus responded to starvation by a reduction of daily energy expenditure. At 32 and 35 °C, this metabolic adjustment fully compensated the reduced food availability and they maintained their energy balance at a slightly reduced body mass. At lower ambient temperatures, they could not fully compensate for the reduced food availability and kept a negative energy balance. The reduction of daily energy expenditure was largely achieved by the occurrence of daily torpor. Torpor even occurred at high ambient temperatures of 32 and 35 °C during which metabolic depression was not associated with a marked decrease of body temperature. The results show that the occurrence of daily torpor is not necessarily linked to cold exposure and the development of a pronounced hypothermia, but may even occur as depression of metabolic rate in a hot environment.  相似文献   

8.
Basal rate of metabolism (BMR) and temperature regulation are described for Goeldi's monkey (Callimico goeldii), a threatened New World primate species of the family Callitrichidae. Measurements were conducted on sleeping individuals during the night, using a special nestbox designed to serve as a respirometry chamber, such that test animals remained undisturbed in their customary surroundings. Oxygen consumption was measured at ambient temperatures between 17.5 and 32 degrees C for 10 individuals with an average body mass of 557 g. Average BMR was 278+/-41 ml O(2) h(-1), which is lower than the value predicted on the basis of body mass. Individual differences in BMR were significant even when body mass was accounted for. Body temperature was measured in five individuals below thermoneutrality and averaged 36+/-0.3 degrees C. The corresponding thermal conductance averaged 29.3+/-2.2 ml O(2) h(-1) degrees C(-1), which is similar to the expected value. The metabolic and thermoregulatory patterns observed in C. goeldii resemble those of the closely related marmosets and tamarins. Low BMR is presumably associated with limited access to energy resources and may be directly linked with phylogenetic dwarfing in the family Callitrichidae.  相似文献   

9.
Bioenergetic benefits of huddling by deer mice (Peromyscus maniculatus)   总被引:1,自引:0,他引:1  
Both short photoperiod and communal social living conserve metabolic energy by deer mice held in thermal neutral ambient temperatures. Initial socialization was energetically more costly than solitary living, but huddling behaviors reduced thermal conductance and mass specific metabolic rate by 30% within 5 days. While short photoperiod reduced metabolic energy expenditure by decreasing thermoregulatory demand, huddling mediated behavioral conservation was achieved with hyperthermic core temperatures.  相似文献   

10.
Several energy-saving strategies have evolved in animals, one example being the short-term reduction of metabolism and body temperature (torpor) in endotherms. For bats, pronounced torpor behaviour has been described. The aim of this study was to assess individual variation in torpor expression of male Myotis daubentonii, and to analyse whether this variation is related to habitat characteristics. For that we measured skin temperatures of bats from different habitats using radio transmitters and also recorded ambient temperature. Skin temperature was corrected for ambient temperature and individual body mass. Cluster analysis of residuals revealed two different thermoregulatory strategies. Males in cluster 1 were more often encountered torpid and reached lower minimum skin temperatures than males in cluster 2. The differences in behaviour were related to environmental variables (water surface area near the roost, roost altitude, precipitation, ambient temperature in the warmest quarter of the year). Males from cluster 1 occupied less favourable habitats (less water surface, higher altitudes, wetter and colder climate) than males from cluster 2. Our data suggest a linkage between torpor behaviour and habitat characteristics. These characteristics could be used to identify favourable and marginal habitats for M. daubentonii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号