首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
RANK and CD40 activate NF-kappaB and MAPKs to similar levels via TRAF6. Even though overexpression of TRAF6 results in osteoclast formation, RANK but not CD40 promotes osteoclastogenesis. To understand the molecular basis for RANK-specific activity in osteoclastogenesis, we created an osteoclast formation system driven by anti-human CD40 antibody-mediated stimulation of a chimeric receptor, h40/mRK, which consists of the extracellular domain of human CD40 and the transmembrane and cytoplasmic domains of mouse RANK. By introducing mutations into three TRAF6-binding sites of RANK, we found that h40/mRK with a single TRAF6-binding site efficiently induced Ca2+ oscillation and expression of NFATc1, a master switch in osteoclastogenesis, whereas CD40 carrying a single TRAF6-binding site did not. However, expression of CD40 that was approximately 100 times greater than that of h40/mRK resulted in osteoclast formation, indicating that the RANK-TRAF6 signal is more potent than the CD40-TRAF6 signal in terms of NFATc1 activation and osteoclastogenesis. These results suggest that RANK may harbor a specific domain that amplifies TRAF6 signaling.  相似文献   

2.
CD40-induced signalling through ligation with its natural ligand (CD40L/CD154) is dependent on recruitment of TRAF molecules to the cytoplasmic domain of the receptor. Here, we applied the yeast two-hybrid system to examine whether other proteins can interact with CD40. Fas-Associated Factor 1(FAF1) was isolated from a HeLa cDNA library using the CD40 cytoplasmic tail (216–278 aa) as a bait construct. FAF1 was able to interact with CD40 both in vitro and in vivo. The FAF1 N-terminal domain was sufficient to bind CD40 and required the TRAF6-binding domain within the cytoplasmic tail of CD40 for binding. CD40 ligation induced FAF1 expression in an NFκB-dependent manner. Knockdown of FAF1 prolonged CD40-induced NFκB, whereas overexpression of FAF1 suppressed CD40-induced NFκB activity and this required interaction of FAF1 with the CD40 receptor via its FID domain. Thus, we report a novel role for FAF1in regulating CD40-induced NFκB activation via a negative feedback loop. Loss of FAF1 function in certain human malignancies may contribute to oncogenesis through unchecked NFκB activation, and further understanding of this process may provide a biomarker of NFκB-targeted therapies for such malignancies.  相似文献   

3.
The human lymphotoxin beta receptor (LTbetaR), a member of the tumor necrosis factor (TNF) receptor superfamily, is essential for not only the development and organization of secondary lymphoid tissues, but also for chemokine release. Even though LTbetaR was shown to recruit TNF-receptor-associated factor (TRAF) 2, 3, and 5, and to induce cell apoptosis or NF-kappaB activation, however, the downstream signaling leading to chemokine expression is not illustrated yet. In this study, we find that overexpression of LTbetaR in HEK293 cells increases IL-8 promoter activity and leads to IL-8 release. LTbetaR-induced IL-8 gene expression requires NF-kappaB (-80 to -71) and AP-1 (-126 to -12) binding sites located in IL-8 promoter, and NF-kappaB is more crucial than AP-1 for IL-8 gene expression. Reporter assay with dominant-negative mutants of TRAFs reveals that TRAF2, 3, and 5, as well as the downstream signal molecules NIK, IKKalpha, and IKKbeta, are involved in IL-8 gene expression. LTbetaR-mediated IL-8 response was inhibited by the dominant-negative mutants of ASK1, MKK4, MKK7, and JNK, but not by those of MEKK1, TAK1, MEK, ERK, and p38 MAPK. This suggests that IL-8 induction by LTbetaR is via TRAFs-elicited signaling pathways, including NIK/IKK-dependent NF-kappaB activation and ASK/MKK/JNK-dependent AP-1 activation.  相似文献   

4.
5.
6.
7.
In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors. We found that the binding affinity of CD154 for αIIbβ3 is ~4-fold higher than for α5β1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbβ3 and show that CD154 residues involved in its binding to CD40 or αIIbβ3 are distinct from those implicated in its interaction to α5β1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5β1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5β1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors.  相似文献   

8.
The CD40 ligand (CD40L)-CD40 dyad can ignite proinflammatory and procoagulatory activities of the vascular endothelium in the pathogenesis and progression of atherosclerosis. Besides being expressed on the activated CD4(+) T cell surface (mCD40L), the majority of circulating CD40L reservoir (sCD40L) in plasma is released from stimulated platelets. It remains debatable which form of CD40L triggers endothelial inflammation. Here, we demonstrate that the agonistic antibody of CD40 (G28.5), which mimics the action of sCD40L, induces rapid endocytosis of CD40 independent of TRAF2/3/6 binding while CD40L expressed on the surface of HEK293A cells captures CD40 at the cell conjunction. Forced internalization of CD40 by constitutively active mutant of Rab5 preemptively activates NF-kappaB pathway, suggesting that CD40 was able to form an intracellular signal complex in the early endosomes. Internalized CD40 exhibits different patterns of TRAF2/3/6 recruitment and Akt phosphorylation from the membrane anchored CD40 complex. Finally, mCD40L but not sCD40L induces the upregulation of proinflammatory cytokines and cell adhesion factors in the primary human vascular endothelial cells in vitro, although both forms of CD40L activate NF-kappaB pathway. These results therefore may help understand the molecular mechanism of CD40L signaling that contributes to the pathophysiology of atherosclerosis.  相似文献   

9.
IkappaB Kinase (IKK)alpha is required for activation of an alternative NF-kappaB signaling pathway based on processing of the NF-kappaB2/p100 precursor protein, which associates with RelB in the cytoplasm. This pathway, which activates RelB:p52 dimers, is required for induction of several chemokine genes needed for organization of secondary lymphoid organs. We investigated the basis for the IKKalpha dependence of the induction of these genes in response to engagement of the lymphotoxin beta receptor (LTbetaR). Using chromatin immunoprecipitation, we found that the promoters of organogenic chemokine genes are recognized by RelB:p52 dimers and not by RelA:p50 dimers, the ubiquitous target for the classical NF-kappaB signaling pathway. We identified in the IKKalpha-dependent promoters a novel type of NF-kappaB-binding site that is preferentially recognized by RelB:p52 dimers. This site links induction of organogenic chemokines and other important regulatory molecules to activation of the alternative pathway.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号