首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Interactions between enamel matrix proteins are important for enamel biomineralization. In recent in situ studies, we showed that the N-terminal proteolytic product of ameloblastin co-localized with amelogenin around the prism boundaries. However, the molecular mechanisms of such interactions are still unclear. Here, in order to determine the interacting domains between amelogenin and ameloblastin, we designed four ameloblastin peptides derived from different regions of the full-length protein (AB1, AB2 and AB3 at N-terminus, and AB6 at C-terminus) and studied their interactions with recombinant amelogenin (rP172), and the tyrosine-rich amelogenin polypeptide (TRAP). A series of amelogenin Trp variants (rP172(W25), rP172(W45) and rP172(W161)) were also used for intrinsic fluorescence spectroscopy. Fluorescence spectra of rP172 titrated with AB3, a peptide encoded by exon 5 of ameloblastin, showed a shift in λmax in a dose-dependent manner, indicating molecular interactions in the region encoded by exon 5 of ameloblastin. Circular dichroism (CD) spectra of amelogenin titrated with AB3 showed that amelogenin was responsible for forming α-helix in the presence of ameloblastin. Fluorescence spectra of amelogenin Trp variants as well as the spectra of TRAP titrated with AB3 showed that the N-terminus of amelogenin is involved in the interaction between ameloblastin and amelogenin. We suggest that macromolecular co-assembly between amelogenin and ameloblastin may play important roles in enamel biomineralization.  相似文献   

2.
The enamel protein amelogenin binds to the GlcNAc-mimicking peptide (GMp) (Ravindranath, R. M. H., Tam, W., Nguyen, P., and Fincham, A. G. (2000) J. Biol. Chem. 275, 39654-39661). The GMp motif is found in the N-terminal region of CK14, a differentiation marker for ameloblasts. The binding affinity of CK14 and amelogenin was confirmed by dosimetric binding of CK14 to recombinant amelogenin (rM179), and to the tyrosine-rich amelogenin polypeptide. The specific binding site for CK14 was identified in the amelogenin trityrosyl motif peptide (ATMP) of tyrosine-rich amelogenin polypeptide and specific interaction between CK14 and [(3)H]ATMP was confirmed by Scatchard analysis. Blocking rM179 with GlcNAc, GMp, or CK14 with ATMP abrogates the CK14-amelogenin interaction. CK14 failed to bind to ATMP when the third proline was substituted with threonine, as in some cases of human X-linked amelogenesis imperfecta or when tyrosyl residues were substituted with phenylalanine. Morphometry of developing teeth distinguished three phases of enamel formation; growth initiation phase (days 0-1), prolific growth phase (days 1-7), and growth cessation phase (post-day 7). Confocal microscopy revealed co-assembly of CK14/amelogenin in the perinuclear region of ameloblasts on day 0, migration of the co-assembled CK14/amelogenin to the apical region of the ameloblasts from day 1, reaching a peak on days 3-5, and a collapse of the co-assembly. Autoradiography with [(3)H]ATMP and [(3)H]GMp corroborated the dissociation of the co-assembly at the ameloblast Tomes' process. It is proposed that CK14 play a chaperon role for nascent amelogenin polypeptide during amelogenesis.  相似文献   

3.
During the maturation stage of amelogenesis, the loss of matrix proteins combined with an accentuated but regulated influx of calcium and phosphate ions into the enamel layer results in the "hardest" tissue of the body. The aim of the present investigation was to examine the effects of chronic hypocalcemia on the maturation of enamel. Twenty-one-day old male Wistar rats were given a calcium-free diet and deionized water for 28 days, while control animals received a normal chow. The rats were perfused with aldehyde and the mandibular incisors were processed for histochemical and ultrastructural analyses and for postembedding colloidal gold immunolabeling with antibodies to amelogenin, ameloblastin, and albumin. The maturation stage enamel organ in hypocalcemic rats exhibited areas with an apparent increase in cell number and the presence of cyst-like structures. In both cases the cells expressed signals for ameloblastin and amelogenin. The content of the cysts was periodic acid-Schiff- and periodic acid-silver nitrate-methanamine-positive and immunolabeled for amelogenin, ameloblastin, and albumin. Masses of a similar material were also found at the enamel surface in depressions of the ameloblast layer. In addition, there were accumulations of glycoproteinaceous matrix at the interface between ameloblasts and enamel. In decalcified specimens, the superficial portion of the enamel matrix sometimes exhibited the presence of tubular crystal "ghosts." The basal lamina, normally separating ameloblasts and enamel during the maturation stage, was missing in some areas. Enamel crystals extended within membrane invaginations at the apical surface of ameloblasts in these areas. Immunolabeling for amelogenin, ameloblastin, and albumin over enamel was variable and showed a heterogeneous distribution. In contrast, enamel in control rats exhibited a homogeneous labeling for amelogenin, a concentration of ameloblastin at the surface, and weak reactivity for albumin. These results suggest that diet-induced chronic hypocalcemia interferes with both cellular and extracellular events during enamel maturation.  相似文献   

4.
Sequential expression of matrix protein genes in developing rat teeth.   总被引:13,自引:0,他引:13  
Tooth organogenesis is dependent on reciprocal and sequential epithelial-mesenchymal interactions and is marked by the appearance of phenotypic matrix macromolecules in both dentin and enamel. The organic matrix of enamel is composed of amelogenins, ameloblastin/amelin, enamelins and tuftelin. Dentin is mainly composed of type I collagen, but its specificity arises from the nature of the non-collagenous proteins (NCPs) involved in mineralization, phosphophoryn (DPP), dentin sialoprotein (DSP), osteocalcin, bone sialoprotein and dentin matrix protein-1 (Dmp1). In this paper, we studied the pattern of expression of four mineralizing protein genes (type I collagen, amelogenin, DSPP and osteocalcin) during the development of rat teeth by in situ hybridization on serial sections. For this purpose, we used an easy and rapid procedure to prepare highly-specific labeled single-stranded DNA probes using asymmetric polymerase chain reaction (PCR). Our results show that type I collagen is primarily expressed in polarizing odontoblasts, followed by the osteocalcin gene expression in the same polarized cells. Concomitantly, polarized ameloblasts start to accumulate amelogenin mRNAs and transiently express the DSPP gene. This latter expression switches over to odontoblasts whereas mineralization occurs. At the same time, osteocalcin gene expression decreases in secretory odontoblasts. Osteocalcin may thus act as an inhibitor of mineralization whereas DSP/DPP would be involved in more advanced steps of mineralization. Amelogenin and type I collagen gene expression increases during dentin mineralization. Their expression is spatially and temporally controlled, in relation with the biological role of their cognate proteins in epithelial-mesenchymal interactions and mineralization.  相似文献   

5.
Ameloblasts synthesize and secrete the enamel matrix proteins (amelogenin, ameloblastin, and enamelin). This investigation examined the profiles of ameloblastin in the ameloblasts and in the enamel matrix during different postnatal (PN) days (days 0-9) of development of mouse molar, using an antibody specific for C-terminal sequence of ameloblastin (Ct; GNKVHQPQVHNAWRF). Ameloblastin is found in three different molecular sizes (37, 55, and 66 kDa) in both ameloblasts and enamel matrix during PN development. In the ameloblasts, the sequence of expression of these fractions varied. The 37-kDa fraction was observed (even before the appearances of mRNA of the proteases, enamelysin and kallikrein-4) on days 0 and 1, persisted until day 3, and was not found thereafter. Other isoforms (55 and 66 kDa) distinctly appeared in ameloblasts after day 1, reached a peak on day 5, and remained thereafter. The Ct-positive granules appeared beaded in the ameloblasts on day 3. In the extracellular matrix, a 37-kDa (but not 66- or 55-kDa) fraction was detected on days 0 and 1 and remained in the matrix throughout the PN days. The larger isoforms (55 and 66 kDa) appeared in the enamel matrix from day 3 onward. On days 0-3, but not later, the 37-kDa isoform co-localizes with amelogenin in Tomes' process and formative enamel, as revealed by laser scan confocal microscopy. Autoradiography confirmed accumulation of 3H-labeled amelogenin trityrosyl motif peptide in the region of Tomes' process and formative enamel from day 0 to 3. These observations suggest that the 37-kDa isoform interacts with amelogenin during early tooth development.  相似文献   

6.
The enamel protein amelogenin binds to GlcNAc (Ravindranath, R. M. H., Moradian-Oldak, R., and Fincham, A.G. (1999) J. Biol. Chem. 274, 2464-2471) and to the GlcNAc-mimicking peptide (GMp) (Ravindranath, R. M. H., Tam, W., Nguyen, P., and Fincham, A. G. (2000) J. Biol. Chem. 275, 39654-39661). The GMp motif in the N-terminal region of the cytokeratin 14 of ameloblasts binds to trityrosyl motif peptide (ATMP) of amelogenin (Ravindranath, R. M. H., Tam, W., Bringas, P., Santos, V., and Fincham, A. G. (2001) J. Biol. Chem. 276, 36586 - 36597). K14 (Type I) pairs with K5 (Type II) in basal epithelial cells; GlcNAc-acylated K5 is identified in ameloblasts. Dosimetric analysis showed the binding affinity of amelogenin to K5 and to GlcNAc-acylated-positive control, ovalbumin. The specific binding of [3H]ATMP with K5 or ovalbumin was confirmed by Scatchard analysis. [3H]ATMP failed to bind to K5 after removal of GlcNAc. Blocking K5 with ATMP abrogates the K5-amelogenin interaction. K5 failed to bind to ATMP when the third proline was substituted with threonine, as in some cases of human X-linked amelogenesis imperfecta or when tyrosyl residues were substituted with phenylalanine. Confocal laser scan microscopic observations on ameloblasts during postnatal (PN) growth of the teeth showed that the K5-amelogenin complex migrated from the cytoplasm to the periphery (on PN day 1) and accumulated at the apical region on day 3. Secretion of amelogenin commences from day 1. K5, similar to K14, may play a role of chaperone during secretion of amelogenin. Upon secretion of amelogenin, K5 pairs with K14. Pairing of K5 and K14 commences on day 3 and ends on day 9. The pairing of K5 and K14 marks the end of secretion of amelogenin.  相似文献   

7.
8.
Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition.  相似文献   

9.
Enamelysin is a tooth-specific matrix metalloproteinase that is expressed during the early through middle stages of enamel development. The enamel matrix proteins amelogenin, ameloblastin, and enamelin are also expressed during this same approximate developmental time period, suggesting that enamelysin may play a role in their hydrolysis. In support of this interpretation, recombinant enamelysin was previously demonstrated to cleave recombinant amelogenin at virtually all of the precise sites known to occur in vivo. Thus, enamelysin is likely an important amelogenin-processing enzyme. To characterize the in vivo biological role of enamelysin during tooth development, we generated an enamelysin-deficient mouse by gene targeting. Although mice heterozygous for the mutation have no apparent phenotype, the enamelysin null mouse has a severe and profound tooth phenotype. Specifically, the null mouse does not process amelogenin properly, possesses an altered enamel matrix and rod pattern, has hypoplastic enamel that delaminates from the dentin, and has a deteriorating enamel organ morphology as development progresses. Our findings demonstrate that enamelysin activity is essential for proper enamel development.  相似文献   

10.
A recent study provided genetic and morphological evidence that rat autosomal-recessive mutation, whitish chalk-like teeth (wct), induced tooth enamel defects resembling those of human amelogenesis imperfecta (AI). The wct locus maps to a specific interval of rat chromosome 14 corresponding to human chromosome 4q21 where the ameloblastin and enamelin genes exist, although these genes are not included in the wct locus. The effect of the wct gene mutation on the enamel matrix synthesis and calcification remains to be elucidated. This study clarifies how the wct gene mutation influences the synthesis of enamel matrix and its calcification by immunocytochemistry for amelogenin, ameloblastin and enamelin, and by electron probe micro-analysis (EPMA). The immunoreactivity for enamel proteins such as amelogenin, ameloblastin, and enamelin in the ameloblasts in the homozygous teeth was the same as that in the heterozygous teeth from secretory to transitional stages, although the homozygous ameloblasts became detached from the enamel matrix in the transitional stage. The flattened ameloblasts in the maturation stage of the homozygous samples contained enamel proteins in their cytoplasm. Thus, the wct mutation was found to prevent the morphological transition of ameloblasts from secretory to maturation stages without disturbing the synthesis of enamel matrix proteins, resulting in the hypo-mineralization of incisor enamel and cyst formation between the enamel organ and matrix. This mutation also prevents the transfer of iron into the enamel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号