首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine how environmental and physiological factors affect leaf gas exchange in a 9-year-old clonal eucalypt plantation (Eucalyptus grandis Hill ex. Maiden hybrids) in the State of Espirito Santo, Brazil, the diurnal patterns of predawn leaf water potential (Ψpd), and leaf gas exchange were monitored from November 1995 to August 1996. Soil water content (Θ) and microclimatic variables were also recorded. Most of the rainfall during the experimental period occurred from October to December 1995 and from March to April 1996, causing a significant variation in Θ and Ψpd. A high positive correlation (r 2=0.92) was observed between Ψpd and Θ measured at 0.3 m depth from the soil surface. During conditions of high soil water availability, the maximum values of stomatal conductance for water vapor (g s) and net photosynthetic rate (A) were over 0.4 mol m–2 s–2 and l5 μmol m–2 s–1, respectively. The results showed that Ψpd and leaf gas exchange of the examined trees were susceptible to changes in the water content of the upper soil layers, where the major concentration of active roots occur. Multiple linear regression analysis indicated that photosynthetic active radiation (Q), vapor pressure deficit (VPD), atmospheric CO2 molar fraction (C a), and Ψpd were the most important factors controlling g s whereas Q and VPD were the main microclimatic variables controlling A. Received: 5 November 1998 / Accepted: 10 November 1999  相似文献   

2.
The size of seeds and the microsite of seed dispersal may affect the early establishment of seedlings through different physiological processes. Here, we examined the effects of seed size and light availability on seedling growth and survival, and whether such effects were mediated by water use efficiency. Acorns of Quercus petraea and the more drought-tolerant Quercus pyrenaica were sowed within and around a tree canopy gap in a sub-Mediterranean forest stand. We monitored seedling emergence and measured predawn leaf water potential (Ψpd), leaf nitrogen per unit area (Na), leaf mass per area, leaf carbon isotope composition (δ13C) and plant growth at the end of the first summer. Survival was measured on the next year. Path analysis revealed a consistent pattern in both species of higher δ13C as Ψpd decreased and higher δ13C as seedlings emerged later in the season, indicating an increase in 13C as the growing season is shorter and drier. There was a direct positive effect of seed size on δ13C in Q. petraea that was absent in Q. pyrenaica. Leaf δ13C had no effect on growth but the probability of surviving until the second year was higher for those seedlings of Q. pyrenaica that had lower δ13C on the first year. In conclusion, leaf δ13C is affected by seed size, seedling emergence time and the availability of light and water, however, leaf δ13C is irrelevant for first year growth, which is directly dependent on the amount of seed reserves.  相似文献   

3.
The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.  相似文献   

4.
 Over the past century, overgrazing and drought in New Mexico’s Jornada Basin has promoted the replacement of native black grama (Bouteloua eriopoda Torr.) grass communities by shrubs, primarily mesquite (Prosopis glandulosa Torr.). We investigated the effects of shrub expansion on the distribution, origin, turnover, and quality of light (LFC) and heavy (HFC) soil organic matter (SOM) fractions using δ13C natural abundance to partition SOM into C4 (grass) and C3 (shrub) sources. Soil organic matter beneath grasses and mesquite was isotopically distinct from associated plant litter, providing evidence of both recent shrub expansion and Holocene plant community changes. Our δ13C analyses indicated that SOM derived from mesquite was greatest beneath shrub canopies, but extended at least 3 m beyond canopy margins, similar to the distribution of fine roots. Specific 14C activities of LFC indicated that root litter is an important source of SOM at depth. Comparison of turnover rates for surface LFC pools in grass (7 or 40 years) and mesquite (11 or 28 years) soils and for HFC pools by soil depth (∼150–280 years), suggest that mesquite may enhance soil C storage relative to grasses. We conclude that the replacement of semiarid grasslands by woody shrubs will effect changes in root biomass, litter production, and SOM cycling that influence nutrient availability and long-term soil C sequestration at the ecosystem level. Received: 17 May 1996 / Accepted: 12 November 1996  相似文献   

5.
Arne Sellin 《Plant and Soil》1996,184(2):273-280
Variation in base water potential (Ψb, a daily maximum level of plant water potential, which is presumed to correspond to the condition of equilibrium between the soil and plant water potentials) was examined in shoots of Norway spruce trees growing in well-drained and waterlogged soils. The influence of soil water content, air temperature, and vapour pressure deficit of the atmosphere on Ψb was studied using the pressure chamber technique. Maximum daily water potentials were not always observable before dawn; some were registered up to two hours later. This tendency being characteristic of trees growing under stress (shade, waterlogging) conditions, increased with declining soil water availability. In trees growing in well-drained soil, Ψb depended asymptotically on the available soil water storage (R2=0.73), while the values were slightly influenced by vapour pressure deficit of the atmosphere as well. In trees growing in waterlogged soil, Ψb was independent of the soil water storage, but sensitive to the vapour pressure deficit.  相似文献   

6.
Responses of Quercus ilex L. seedlings from three different localities in Italy to experimentally imposed drought stress were analysed. Predawn (Ψpd) and midday (Ψm) leaf water potential of stressed seedlings decreased on an average until −4.0 and −4.2 MPa, respectively, in the severe water stress. At the end of the severe water stress the relative water content (RWC) was 72.5 – 83.6 % and the photosynthetic rates (PN) near zero. The critical threshold value of Ψpd for complete stomatal closure was from −4.0 to −4.5 MPa. The leaf damage after the severe water stress was significantly greater in seedlings originated from the acorns of climax area (45 % total leaf injured area and 40 % fallen leaves) than in the other seedlings (on an average 20.5 % total leaf injured area and 21 % fallen leaves). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The effects of drought on membrane lipids and leaf pigments and the ability of andiroba (Carapa guianensis Aubl.) plants to attenuate oxidative damage through antioxidant enzymes or adjusting carotenoids and glycinebetaine (GB) were examined. Assessments were performed when pre-dawn leaf water potential (Ψpd) of water-stressed plants reached −1.35 and −3.21 MPa (15 and 27 days after withholding irrigation) and 12 h after resuming watering (short-term rewetting, day 28). Oxidative damages to lipids were evident on day 15, in which drought caused an increase of 47% in malondialdehyde (MDA) content. On day 27, MDA content did not differ between treatments. The activity of superoxide dismutase remained unchanged over experimental period, while significant increases in the ascorbate peroxidase (APX, 110%) and catalase (CAT, 50%) activities were observed only on day 27. GB content was 62% (day 15) and 112% (day 27) higher in water-stressed plants than in control. Regardless of Ψpd, both chlorophyll (Chl) a, Chl b and total carotenoids remained unchanged between well-watered and water-stressed plants, indicating that drought did not result in degradation of leaflet pigments. On day 28, Ψpd of water-stressed plants increased near to control plants and both activities of APX and CAT did not differ between treatments. Altogether, adjustments in APX and CAT activity and in the GB content were efficient strategies to prevent expressive oxidative damages in water-stressed andiroba plants.  相似文献   

8.
Water status and gas exchange of beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Mattuschka) Liebl.] were studied in a mixed stand in the Montejo de la Sierra forest (central Iberian Peninsula), one of the southernmost locations of both species in Europe. Gas exchange and water potential were measured in leaves at different canopy levels over several days in two growing seasons. The daily variation pattern was established with the measurements of three selected dates per year, representative of the soil moisture content situations in early, mid- and late summer. A similar daily time course of leaf water potential was found for the two species. Nevertheless, beech showed a most noticeable decrease of water potential at midmorning and maintained lower leaf water potential than oak in the early afternoon. In 1994 the sessile oak saplings showed higher values of predawn water potential (Ψpd) than beech at the end of summer, when soil moisture content was lowest (20 cm depth). Beech showed a significantly lower net assimilation rate (A) than sessile oak for leaves under the same PPFD. Maximum net photosynthesis values (A max) for beech and sessile oak on sunny leaves were 10.1±0.4 μmol m–2 s–1 and 17.8±1.7 μmol m–2 s–1 respectively, and those for water vapour stomatal conductance (g wv) were 265±31 mmol m–2 s–1 and 438±74 mmol m–2 s–1. Differences in A and g wv between the two species were maintained throughout the day on all measurement dates. No clear relationship was found between water status of saplings and stomata performance; there was only a negative correlation between Ψpd and g wvmid in beech. Nevertheless, a significant response to the air vapour pressure gradient between leaf and air was translated into stomata closure on an hourly basis, more intensively in beech. Received: 4 March 1999 / Accepted: 21 December 1999  相似文献   

9.
Semiarid areas in the US have realized extensive and persistent exotic plant invasions. Exotics may succeed in arid regions by extracting soil water at different times or from different depths than native plants, but little data is available to test this hypothesis. Using estimates of root mass, gravimetric soil water, soil-water potential, and stable isotope ratios in soil and plant tissues, we determined water-use patterns of exotic and native plant species in exotic- and native-dominated communities in Washington State, USA. Exotic and native communities both extracted 12 ± 2 cm of water from the top 120 cm of soil during the growing season. Exotic communities, however, shifted the timing of water use by extracting surface (0–15 cm) soil water early in the growing season (i.e., April to May) before native plants were active, and by extracting deep (0–120 cm) soil water late in the growing season (i.e., June to July) after natives had undergone seasonal senescence. We found that δ 18O values of water in exotic annuals (e.g., −11.8 ± 0.4 ‰ for Bromus tectorum L.) were similar to δ 18O values of surface soil water (e.g., −13.3 ± 1.4 ‰ at −15 cm) suggesting that transpiration by these species explained early season, surface water use in exotic communities. We also found that δ 18O values of water in taprooted exotics (e.g., −17.4 ± 0.3 ‰ for Centaurea diffusa Lam.) were similar to δ 18O values of deep soil water (e.g., −18.4 ± 0.1 ‰ at −120 cm) suggesting that transpiration by these species explained late season, deep water use. The combination of early-season, shallow water-use by exotic winter-actives and late-season, deep water-use by taprooted perennials potentially explains how exotic communities resist establishment of native species that largely extracted soil water only in the middle of the growing season (i.e., May to June). Early season irrigation or the planting of natives with established root systems may allow native plant restoration.  相似文献   

10.
Studies were conducted to examine changes in soil (Ψs) and plant water status during summer in a 16-year old Quercus suber plantation in southern Portugal. Continuous measurements were conducted between May 2003 and August 2004, while discontinuous measurements were conducted on a monthly basis between May and September 2003 and repeated between March and September 2004. Intensive measurements were conducted on five trees with mean height and DBH of 5.3 m and 11.6 cm, respectively, growing at close proximity to each other. Weather conditions and soil water potential (Ψs) at the rhizosphere of each of the trees measured at 0.3 and 1 m soil depth were continuously monitored. Predawn (Ψpd) and midday (Ψmd) leaf water potentials were determined every month. Soil and plant samples were also collected in June and September from different locations within the study site for δ18O isotope composition analysis. Pressure–volume (pv) curves were constructed from plant shoots at different times during the vegetative period to determine osmotic potential at full saturation (Π100), water potential at turgor loss point (Ψtlp), relative water content at turgor loss point (R*tlp) and bulk modulus of elasticity (ε). Significant P < 0.05 decline in Ψs occurred between May and September, the lowest value recorded being –2.0 MPa. Decline in soil moisture affected tree water status, but decline in leaf water potential varied significantly (P < 0.05) among the trees. At the end of summer drought, lowest Ψpd measured was –1.7 MPa while the highest measured during this time was –0.8 MPa. Differences among trees were attributed to differences in rooting depth, as shown by regression analysis of 18O isotopes. Radial stem growth ceased when Ψs within the upper 0.3 m depth approached –1.5 MPa. The upper soil layers contributed approximately 33% of the total tree water requirement, between spring and mid summer when drought was experienced by trees. Deep soil layers however, supplied most of the water required during drought and no growth was recorded during this time. Stressed trees increased solute concentration of their tissues by a Magnitude of 0.7 MPa while bulk tissue elastic modulus increased by about 17 MPa. The study emphasizes the significance of roots as determinants of tree productivity and survival in the Mediterranean ecosystems.  相似文献   

11.
The feasibility of obtaining sap flow (SF), maximum daily trunk shrinkage (MDS) and midday stem water potential (Ψstem) baselines or reference values for use in irrigation scheduling was studied in adult Fino lemon trees (Citrus limon (L.) Burm. fil.) grafted on sour orange (C. aurantium L.) rootstocks. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that baselines for plant-based water status indicators (MDS, SF and Ψstem) can be obtained, even though there was a certain scattering of the data points representing the relations between the plant-based measurements and the environmental variables (reference evapotranspiration, solar radiation, vapour pressure deficit and temperature). SF was more closely associated with changes in the studied evaporative demand variables than were MDS and Ψstem. SF and Ψstem were more closely correlated with changes in reference evapotranspiration (ETo) (r 2 = 0.93 and 0.79, respectively), while MDS behaviour was best correlated with mean daily air temperature (T m) (r 2 = 0.76). Increases in the evaporative demand induced more negative Ψstem values and, as a consequence, SF increased, which, in turn, was translated into an increase in MDS. This confirmed that SF and MDS were very good predictors of the plant water status during the observation period and their continuous recording offers the promising possibility of their use in automatic irrigation scheduling in lemon trees.  相似文献   

12.
Miconia albicans, a common evergreen cerrado species, was studied under field conditions. Leaf gas exchange and pre-dawn leaf water potential (Ψpd) were determined during wet and dry seasons. The potential photosynthetic capacity (P Npmax) and the apparent carboxylation efficiency (ε) dropped in the dry season to 28.0 and 0.7 %, respectively, of the maximum values in the wet season. The relative mesophyll (Lm) and stomatal (Ls) limitations of photosynthesis increased, respectively, from 24 and 44 % in the wet season to 79 and 57 % at the peak of the dry season when mean Ψpd reached −5.2 MPa. After first rains, the P Npmax, ε, and Lm recovered reaching the wet season values, but Ls was maintained high (63 %). The shallow root system growing on stonemason limited by lateral concrete wall to a depth of 0.33 m explained why extreme Ψpd was brought about. Thus M. albicans is able to overcome quickly the strains imposed by severe water stress.  相似文献   

13.
Physiological activity and structural dynamics in arid and semi-arid ecosystems are driven by discrete inputs or pulses of growing season precipitation. Here we describe the short-term dynamics of ecosystem physiology in experimental stands of native (Heteropogon contortus) and invasive (Eragrostis lehmanniana) grasses to an irrigation pulse across two geomorphic surfaces with distinctly different soils: a Pleistocene-aged surface with high clay content in a strongly horizonated soil, and a Holocene-aged surface with low clay content in homogenously structured soils. We evaluated whole-ecosystem and leaf-level CO2 and H2O exchange, soil CO2 efflux, along with plant and soil water status to understand potential constraints on whole-ecosystem carbon exchange during the initiation of the summer monsoon season. Prior to the irrigation pulse, both invasive and native grasses had less negative pre-dawn water potentials ( pd), greater leaf photosynthetic rates (A net) and stomatal conductance (g s), and greater rates of net ecosystem carbon exchange (NEE) on the Pleistocene surface than on the Holocene. Twenty-four hours following the experimental application of a 39 mm irrigation pulse, soil CO2 efflux increased leading to all plots losing CO2 to the atmosphere over the course of a day. Invasive species stands had greater evapotranspiration rates (ET) immediately following the precipitation pulse than did native stands, while maximum instantaneous NEE increased for both species and surfaces at roughly the same rate. The differential ET patterns through time were correlated with an earlier decline in NEE in the invasive species as compared to the native species plots. Plots with invasive species accumulated between 5% and 33% of the carbon that plots with the native species accumulated over the 15-day pulse period. Taken together, these results indicate that system CO2 efflux (both the physical displacement of soil CO2 by water along with plant and microbial respiration) strongly controls whole-ecosystem carbon exchange during precipitation pulses. Since CO2 and H2O loss to the atmosphere was partially driven by species effects on soil microclimate, understanding the mechanistic relationships between the soil characteristics, plant ecophysiological responses, and canopy structural dynamics will be important for understanding the effects of shifting precipitation and vegetation patterns in semi-arid environments.  相似文献   

14.
The cycling of surface water, energy, nutrients, and carbon is different between semiarid grassland and shrubland ecosystems. Although differences are evident when grasslands are compared to shrublands, the processes that contribute to this transition are more challenging to document. We evaluate how surface redistribution of precipitation and plant responses to the resulting infiltration patterns could contribute to the changes that occur during the transition from grassland to shrubland. We measured soil water potential under grasses (Bouteloua eriopoda), shrubs (Larrea tridentata) and bare soil and changes in plant water relations and gas exchange following a 15 mm summer storm in the grassland–shrubland ecotone at the Sevilleta National Wildlife Refuge in central New Mexico USA. Following the storm, soil water potential (Ψs) increased to 30 cm depth beneath both grass and shrub canopies, with the greatest change observed in the top 15 cm of the soil. The increase in Ψs was greater beneath grass canopies than beneath shrub canopies. Ψs under bare soil increased only to 5 cm depth. The substantial redistribution of rainfall and different rooting depths of the vegetation resulted in high Ψs throughout most of the rooting volume of the grasses whereas soil moisture was unchanged throughout a large portion of the shrub rooting volume. Consistent with this pattern, predawn water potential (ΨPD) of grasses increased more than 5 MPa to greater than −1 MPa whereas ΨPD of shrubs increased to −2.5 MPa, a change of less than 2 MPa. Transpiration increased roughly linearly with ΨPD in both grasses and shrubs. In grasses, assimilation was strongly correlated with ΨPD whereas there was no relationship in shrubs where assimilation showed no significant response to the pulse of soil moisture following the storm. These data show that preferential redistribution of water to grass canopies enhances transpiration and assimilation by grasses following large summer storms. This process may inhibit shrubland expansion at the ecotone during periods without extreme drought.  相似文献   

15.
The interspecific variability of sunlit leaf carbon isotope composition (δ13C), an indicator of leaf intrinsic water-use efficiency (WUE, CO2 assimilation rate/leaf conductance for water vapour), was investigated in canopy trees of three lowland rainforest stands in French Guiana, differing in floristic composition and in soil drainage characteristics, but subjected to similar climatic conditions. We sampled leaves with a rifle from 406 trees in total, representing 102 species. Eighteen species were common to the three stands. Mean species δ13C varied over a 6.0‰ range within each stand, corresponding to WUE varying over about a threefold range. Species occurring in at least two stands displayed remarkably stable δ13C values, suggesting a close genetic control of species δ13C. Marked differences in species δ13C values were found with respect to: (1) the leaf phenology pattern (average δ13C=–29.7‰ and –31.0‰ in deciduous-leaved and evergreen-leaved species, respectively), and (2) different types of shade tolerance defined by features reflecting the plasticity of growth dynamics with respect to contrasting light conditions. Heliophilic species exhibited more negative δ13C values (average δ13C=–30.5‰) (i.e. lower WUE) than hemitolerant species (–29.3‰). However, tolerant species (–31.4‰) displayed even more negative δ13C values than heliophilic ones. We could not provide a straightforward ecophysiological interpretation of this result. The negative relationship found between species δ13C and midday leaf water potential (Ψwm) suggests that low δ13C is associated with high whole tree leaf specific hydraulic conductance. Canopy carbon isotope discrimination (Δ A ) calculated from the basal area-weighed integral of the species δ13C values was similar in the three stands (average Δ A =23.1‰), despite differences in stand species composition and soil drainage type, reflecting the similar proportions of the three different shade-tolerance types among stands. Received: 30 November 1999 / Accepted: 23 March 2000  相似文献   

16.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):237-244
Genistein is the major root produced isoflavonoid inducer of nod genes in the symbiosis between B. japonicum and soybean plants. Reduction in the isoflavonoid content of the host plants has recently been suggested as a possible explanation for the inhibition of mineral nitrogen (N) on the establishment of the symbiosis. In order to determine whether genistein addition could overcome this inhibition, we incubated B. japonicum cells (strain 532C) with genistein. Mineral N (in the form of NH4NO3) was applied at 0, 20 and 100 kg ha-1. The experiments were conducted on both a sandy-loam soil and a clay-loam soil. Preincubation of B. japonicum cells with genistein increased soybean nodule number and nodule weight, especially in the low-N-containing sandy-loam soil and the low N fertilizer treatment. Plant growth and yield were less affected by genistein preincubation treatments than nitrogen assimilation. Total plant nitrogen content was increased by the two genistein preincubation treatments at the early flowering stage. At maturity, shoot and total plant nitrogen contents were increased by the 40 μM genistein preincubation treatment at the sandy-loam soil site. Total nitrogen contents were increased by the 20 μM genistein preincubation treatment only at the 0 and 20 kg ha-1 nitrate levels in clay-loam soil. Forty μM genistein preincubation treatment increased soybean yield on the sandy-loam soil. There was no difference among treatments for 100-seed weight. The results suggest that preincubation of B. japonicum cells with genistein could improve soybean nodulation and nitrogen fixation, and at least partially overcome the inhibition of mineral nitrogen on soybean nodulation and nitrogen fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.  相似文献   

18.
Carbon isotopic composition of soils subjected to C3–C4 vegetation change can be used to estimate C turnover in bulk soil and in soil organic matter (SOM) pools with fast and intermediate turnover rates. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability, so that thermogravimetry can be used to separate SOM pools with contrasting turnover rates. Soil samples from a field plot cultivated for 10.5 years with the perennial C4 plant Miscanthus×gigantheus were analyzed by thermogravimetry coupled with differential scanning calorimetry (DSC). Three SOM fractions were distinguished according to the differential weight losses and exothermic or endothermic reactions measured by DSC. The δ13C and δ15N values of these three fractions obtained by gradual soil heating were measured by IRMS. The weight losses up to 190 °C mainly reflected water evaporation because no significant C and N losses were detected and δ13C and δ15N values of the residual SOM remained unchanged. The δ13C values (−16.4‰) of SOM fraction decomposed between 190 and 390 °C (containing 79% of total soil C) were slightly closer to that of the Miscanthus plant tissues (δ13C = −11.8‰) compared to the δ13C values (−16.8‰) of SOM fraction decomposed above 390 °C containing the residual 21% of SOM. Thus, the C turnover in the thermally labile fraction was faster than that in thermally stable fractions, but the differences were not very strong. Therefore, in this first study combining TG-DSC with isotopic analysis, we conclude that the thermal stability of SOM was not very strongly related to biological availability of SOM fractions. In contrast to δ13C, the δ15N values strongly differed between SOM fractions, suggesting that N turnover in the soil was different from C turnover. More detailed fractionation of SOM by thermal analysis with subsequent isotopic analysis may improve the resolution for δ13C.  相似文献   

19.
Sap flow rate (Qw) and leaf water potential (Ψw.leaf) in adult specimens of birch (Betula) and oak (Quercus) were measured under contrasting soil moisture conditions (Ψw.sofl). With sufficient soil moisture Qw reached about 250 cm3h−1 calculated per unit tree-trunk segment as given by 1 cm length of its circumference. In soil water-stress conditions (when Ψw.leaf = = −15 × 105Pa), birch stopped transpiration and wilted. Oak transpired even when Ψw.leaf fell below −20 × 105Pa. The relation between Qw and Ψw.leaf was always linear and with various Ψw.soil differed in the slopes of regression lines only. Hydraulic conductance (Kwcu) with nonlimiting moisture conditions reached about 6 × 10−9m3 10−5Pa−1s−1 and “conductivity” (“kwa”) when calculated per leaf area unit reached about 23 m 10−5Pa−1s−1. Kwcu and “kwa” were of about one half to nine times greater in birch than in oak. On the basis of relations between Ψw.soil at various depths, Ψw.leaf and Qw (resp. Kw) it is possible to assess the maximal rooting depth and the effective depth where the maximum of absorption of roots occurs. It is to be seen that the root system macrostructure substantially participates in the drought avoidance of adult trees in a forest stand.  相似文献   

20.
Concentrations and natural isotope abundance of total sulfur and nitrogen as well as sulfate and nitrate concentrations were measured in needles of different age classes and in soil samples of different horizons from a healthy and a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), in order to study the fate of atmospheric depositions of sulfur and nitrogen compounds. The mean δ15N of the needles ranged between −3.7 and −2.1 ‰ and for δ34S a range between −0.4 and +0.9 ‰ was observed. δ34S and sulfur concentrations in the needles of both stands increased continuously with needle age and thus, were closely correlated. The δ15N values of the needles showed an initial decrease followed by an increase with needle age. The healthy stand showed more negative δ15N values in old needles than the declining stand. Nitrogen concentrations decreased with needle age. For soil samples at both sites the mean δ15N and δ34S values increased from −3 ‰ (δ15N) or +0.9 ‰ (δ34S) in the uppermost organic layer to about +4 ‰ (δ15N) or +4.5 ‰ (δ34S) in the mineral soil. This depth-dependent increase in abundance of 15N and 34S was accompanied by a decrease in total nitrogen and sulfur concentrations in the soil. δ15N values and nitrogen concentrations were closely correlated (slope −0.0061 ‰ δ15N per μmol eq N gdw −1), and δ34S values were linearly correlated with sulfur concentrations (slope −0.0576 ‰ δ34S per μmol eq S gdw −1). It follows that in the same soil samples sulfur concentrations were linearly correlated with the nitrogen concentrations (slope 0.0527), and δ34S values were linearly correlated with δ15N values (slope 0.459). A correlation of the sulfur and nitrogen isotope abundances on a Δ basis (which considers the different relative frequencies of 15N and 34S), however, revealed an isotope fractionation that was higher by a factor of 5 for sulfur than for nitrogen (slope 5.292). These correlations indicate a long term synchronous mineralization of organic nitrogen and sulfur compounds in the soil accompanied by element-specific isotope fractionations. Based on different sulfur isotope abundance of the soil (δ34S=0.9 ‰ for total sulfur of the organic layer was assumed to be equivalent to about −1.0 ‰ for soil sulfate) and of the atmospheric SO2 deposition (δ34S=2.0 ‰ at the healthy site and 2.3 ‰ at the declining site) the contribution of atmospheric SO2 to total sulfur of the needles was estimated. This contribution increased from about 20 % in current-year needles to more than 50 % in 3-year-old needles. The proportion of sulfur from atmospheric deposition was equivalent to the age dependent sulfate accumulation in the needles. In contrast to the accumulation of atmospheric sulfur compounds nitrogen compounds from atmospheric deposition were metabolized and were used for growth. The implications of both responses to atmospheric deposition are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号