首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

DAVID is the most popular tool for interpreting large lists of gene/proteins classically produced in high-throughput experiments. However, the use of DAVID website becomes difficult when analyzing multiple gene lists, for it does not provide an adequate visualization tool to show/compare multiple enrichment results in a concise and informative manner.

Result

We implemented a new R-based graphical tool, BACA (Bubble chArt to Compare Annotations), which uses the DAVID web service for cross-comparing enrichment analysis results derived from multiple large gene lists. BACA is implemented in R and is freely available at the CRAN repository (http://cran.r-project.org/web/packages/BACA/).

Conclusion

The package BACA allows R users to combine multiple annotation charts into one output graph by passing DAVID website.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0477-4) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
Specific selection pressures often lead to specifically mutated genomes. The open source software SeqFeatR has been developed to identify associations between mutation patterns in biological sequences and specific selection pressures (“features”). For instance, SeqFeatR has been used to discover in viral protein sequences new T cell epitopes for hosts of given HLA types. SeqFeatR supports frequentist and Bayesian methods for the discovery of statistical sequence-feature associations. Moreover, it offers novel ways to visualize results of the statistical analyses and to relate them to further properties. In this article we demonstrate various functions of SeqFeatR with real data. The most frequently used set of functions is also provided by a web server. SeqFeatR is implemented as R package and freely available from the R archive CRAN (http://cran.r-project.org/web/packages/SeqFeatR/index.html). The package includes a tutorial vignette. The software is distributed under the GNU General Public License (version 3 or later). The web server URL is https://seqfeatr.zmb.uni-due.de.  相似文献   

4.
5.
6.

Background & Objective

Managing data from large-scale projects (such as The Cancer Genome Atlas (TCGA)) for further analysis is an important and time consuming step for research projects. Several efforts, such as the Firehose project, make TCGA pre-processed data publicly available via web services and data portals, but this information must be managed, downloaded and prepared for subsequent steps. We have developed an open source and extensible R based data client for pre-processed data from the Firehouse, and demonstrate its use with sample case studies. Results show that our RTCGAToolbox can facilitate data management for researchers interested in working with TCGA data. The RTCGAToolbox can also be integrated with other analysis pipelines for further data processing.

Availability and implementation

The RTCGAToolbox is open-source and licensed under the GNU General Public License Version 2.0. All documentation and source code for RTCGAToolbox is freely available at http://mksamur.github.io/RTCGAToolbox/ for Linux and Mac OS X operating systems.  相似文献   

7.

Background

Sampling genomes with Fosmid vectors and sequencing of pooled Fosmid libraries on the Illumina platform for massive parallel sequencing is a novel and promising approach to optimizing the trade-off between sequencing costs and assembly quality.

Results

In order to sequence the genome of Norway spruce, which is of great size and complexity, we developed and applied a new technology based on the massive production, sequencing, and assembly of Fosmid pools (FP). The spruce chromosomes were sampled with ~40,000 bp Fosmid inserts to obtain around two-fold genome coverage, in parallel with traditional whole genome shotgun sequencing (WGS) of haploid and diploid genomes. Compared to the WGS results, the contiguity and quality of the FP assemblies were high, and they allowed us to fill WGS gaps resulting from repeats, low coverage, and allelic differences. The FP contig sets were further merged with WGS data using a novel software package GAM-NGS.

Conclusions

By exploiting FP technology, the first published assembly of a conifer genome was sequenced entirely with massively parallel sequencing. Here we provide a comprehensive report on the different features of the approach and the optimization of the process.We have made public the input data (FASTQ format) for the set of pools used in this study:ftp://congenie.org/congenie/Nystedt_2013/Assembly/ProcessedData/FosmidPools/.(alternatively accessible via http://congenie.org/downloads).The software used for running the assembly process is available at http://research.scilifelab.se/andrej_alexeyenko/downloads/fpools/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-439) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

One of the most common goals of hierarchical clustering is finding those branches of a tree that form quantifiably distinct data subtypes. Achieving this goal in a statistically meaningful way requires (a) a measure of distinctness of a branch and (b) a test to determine the significance of the observed measure, applicable to all branches and across multiple scales of dissimilarity.

Results

We formulate a method termed Tree Branches Evaluated Statistically for Tightness (TBEST) for identifying significantly distinct tree branches in hierarchical clusters. For each branch of the tree a measure of distinctness, or tightness, is defined as a rational function of heights, both of the branch and of its parent. A statistical procedure is then developed to determine the significance of the observed values of tightness. We test TBEST as a tool for tree-based data partitioning by applying it to five benchmark datasets, one of them synthetic and the other four each from a different area of biology. For each dataset there is a well-defined partition of the data into classes. In all test cases TBEST performs on par with or better than the existing techniques.

Conclusions

Based on our benchmark analysis, TBEST is a tool of choice for detection of significantly distinct branches in hierarchical trees grown from biological data. An R language implementation of the method is available from the Comprehensive R Archive Network: http://www.cran.r-project.org/web/packages/TBEST/index.html.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1000) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
We propose permutation tests based on the pairwise distances between microarrays to compare location, variability, or equivalence of gene expression between two populations. For these tests the entire microarray or some pre-specified subset of genes is the unit of analysis. The pairwise distances only have to be computed once so the procedure is not computationally intensive despite the high dimensionality of the data. An R software package, permtest, implementing the method is freely available from the Comprehensive R Archive Network at http://cran.r-project.org.  相似文献   

11.

Background

Assembling genes from next-generation sequencing data is not only time consuming but computationally difficult, particularly for taxa without a closely related reference genome. Assembling even a draft genome using de novo approaches can take days, even on a powerful computer, and these assemblies typically require data from a variety of genomic libraries. Here we describe software that will alleviate these issues by rapidly assembling genes from distantly related taxa using a single library of paired-end reads: aTRAM, automated Target Restricted Assembly Method. The aTRAM pipeline uses a reference sequence, BLAST, and an iterative approach to target and locally assemble the genes of interest.

Results

Our results demonstrate that aTRAM rapidly assembles genes across distantly related taxa. In comparative tests with a closely related taxon, aTRAM assembled the same sequence as reference-based and de novo approaches taking on average < 1 min per gene. As a test case with divergent sequences, we assembled >1,000 genes from six taxa ranging from 25 – 110 million years divergent from the reference taxon. The gene recovery was between 97 – 99% from each taxon.

Conclusions

aTRAM can quickly assemble genes across distantly-related taxa, obviating the need for draft genome assembly of all taxa of interest. Because aTRAM uses a targeted approach, loci can be assembled in minutes depending on the size of the target. Our results suggest that this software will be useful in rapidly assembling genes for phylogenomic projects covering a wide taxonomic range, as well as other applications. The software is freely available http://www.github.com/juliema/aTRAM.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0515-2) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

When studying the genetics of a human trait, we typically have to manage both genome-wide and targeted genotype data. There can be overlap of both people and markers from different genotyping experiments; the overlap can introduce several kinds of problems. Most times the overlapping genotypes are the same, but sometimes they are different. Occasionally, the lab will return genotypes using a different allele labeling scheme (for example 1/2 vs A/C). Sometimes, the genotype for a person/marker index is unreliable or missing. Further, over time some markers are merged and bad samples are re-run under a different sample name. We need a consistent picture of the subset of data we have chosen to work with even though there might possibly be conflicting measurements from multiple data sources.

Results

We have developed the dbVOR database, which is designed to hold data efficiently for both genome-wide and targeted experiments. The data are indexed for fast retrieval by person and marker. In addition, we store pedigree and phenotype data for our subjects. The dbVOR database allows us to select subsets of the data by several different criteria and to merge their results into a coherent and consistent whole. Data may be filtered by: family, person, trait value, markers, chromosomes, and chromosome ranges. The results can be presented in columnar, Mega2, or PLINK format.

Conclusions

dbVOR serves our needs well. It is freely available from https://watson.hgen.pitt.edu/register. Documentation for dbVOR can be found at https://watson.hgen.pitt.edu/register/docs/dbvor.html.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0505-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
Whole-genome sequencing of tumor tissue has the potential to provide comprehensive characterization of genomic alterations in tumor samples. We present Patchwork, a new bioinformatic tool for allele-specific copy number analysis using whole-genome sequencing data. Patchwork can be used to determine the copy number of homologous sequences throughout the genome, even in aneuploid samples with moderate sequence coverage and tumor cell content. No prior knowledge of average ploidy or tumor cell content is required. Patchwork is freely available as an R package, installable via R-Forge (http://patchwork.r-forge.r-project.org/).  相似文献   

15.
Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools.  相似文献   

16.
17.
Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip) to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can identify ∼50% more validated binding targets than the original ad hoc method and two recently published methods. To facilitate the application of the algorithm, we have released an R package, MiClip ( http://cran.r-project.org/web/packages/MiClip/index.html ), and a public web-based graphical user interface software (http://galaxy.qbrc.org/tool_runner?tool_id=mi_clip) for customized analysis.  相似文献   

18.
We present GobyWeb, a web-based system that facilitates the management and analysis of high-throughput sequencing (HTS) projects. The software provides integrated support for a broad set of HTS analyses and offers a simple plugin extension mechanism. Analyses currently supported include quantification of gene expression for messenger and small RNA sequencing, estimation of DNA methylation (i.e., reduced bisulfite sequencing and whole genome methyl-seq), or the detection of pathogens in sequenced data. In contrast to previous analysis pipelines developed for analysis of HTS data, GobyWeb requires significantly less storage space, runs analyses efficiently on a parallel grid, scales gracefully to process tens or hundreds of multi-gigabyte samples, yet can be used effectively by researchers who are comfortable using a web browser. We conducted performance evaluations of the software and found it to either outperform or have similar performance to analysis programs developed for specialized analyses of HTS data. We found that most biologists who took a one-hour GobyWeb training session were readily able to analyze RNA-Seq data with state of the art analysis tools. GobyWeb can be obtained at http://gobyweb.campagnelab.org and is freely available for non-commercial use. GobyWeb plugins are distributed in source code and licensed under the open source LGPL3 license to facilitate code inspection, reuse and independent extensions http://github.com/CampagneLaboratory/gobyweb2-plugins.  相似文献   

19.

Background

A generalized notion of biclustering involves the identification of patterns across subspaces within a data matrix. This approach is particularly well-suited to analysis of heterogeneous molecular biology datasets, such as those collected from populations of cancer patients. Different definitions of biclusters will offer different opportunities to discover information from datasets, making it pertinent to tailor the desired patterns to the intended application. This paper introduces ‘GABi’, a customizable framework for subspace pattern mining suited to large heterogeneous datasets. Most existing biclustering algorithms discover biclusters of only a few distinct structures. However, by enabling definition of arbitrary bicluster models, the GABi framework enables the application of biclustering to tasks for which no existing algorithm could be used.

Results

First, a series of artificial datasets were constructed to represent three clearly distinct scenarios for applying biclustering. With a bicluster model created for each distinct scenario, GABi is shown to recover the correct solutions more effectively than a panel of alternative approaches, where the bicluster model may not reflect the structure of the desired solution. Secondly, the GABi framework is used to integrate clinical outcome data with an ovarian cancer DNA methylation dataset, leading to the discovery that widespread dysregulation of DNA methylation associates with poor patient prognosis, a result that has not previously been reported. This illustrates a further benefit of the flexible bicluster definition of GABi, which is that it enables incorporation of multiple sources of data, with each data source treated in a specific manner, leading to a means of intelligent integrated subspace pattern mining across multiple datasets.

Conclusions

The GABi framework enables discovery of biologically relevant patterns of any specified structure from large collections of genomic data. An R implementation of the GABi framework is available through CRAN (http://cran.r-project.org/web/packages/GABi/index.html).

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0355-5) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

While next-generation sequencing technologies have made sequencing genomes faster and more affordable, deciphering the complete genome sequence of an organism remains a significant bioinformatics challenge, especially for large genomes. Low sequence coverage, repetitive elements and short read length make de novo genome assembly difficult, often resulting in sequence and/or fragment “gaps” – uncharacterized nucleotide (N) stretches of unknown or estimated lengths. Some of these gaps can be closed by re-processing latent information in the raw reads. Even though there are several tools for closing gaps, they do not easily scale up to processing billion base pair genomes.

Results

Here we describe Sealer, a tool designed to close gaps within assembly scaffolds by navigating de Bruijn graphs represented by space-efficient Bloom filter data structures. We demonstrate how it scales to successfully close 50.8 % and 13.8 % of gaps in human (3 Gbp) and white spruce (20 Gbp) draft assemblies in under 30 and 27 h, respectively – a feat that is not possible with other leading tools with the breadth of data used in our study.

Conclusion

Sealer is an automated finishing application that uses the succinct Bloom filter representation of a de Bruijn graph to close gaps in draft assemblies, including that of very large genomes. We expect Sealer to have broad utility for finishing genomes across the tree of life, from bacterial genomes to large plant genomes and beyond. Sealer is available for download at https://github.com/bcgsc/abyss/tree/sealer-release.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0663-4) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号