首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During a force-matched bilateral task, when pain is induced in one limb, a shift of load to the non-painful leg is classically observed. This study aimed to test the hypothesis that this adaptation to pain depends on the mechanical efficiency of the non-painful leg. We studied a bilateral plantarflexion task that allowed flexibility in the relative force produced with each leg, but constrained the sum of forces from both legs to match a target. We manipulated the mechanical efficiency of the non-painful leg by imposing scaling factors: 1, 0.75, or 0.25 to decrease mechanical efficiency (Decreased efficiency experiment: 18 participants); and 1, 1.33 or 4 to increase mechanical efficiency (Increased efficiency experiment: 17 participants). Participants performed multiple sets of three submaximal bilateral isometric plantarflexions with each scaling factor during two conditions (Baseline and Pain). Pain was induced by injection of hypertonic saline into the soleus. Force was equally distributed between legs during the Baseline contractions (laterality index was close to 1; Decreased efficiency experiment: 1.16±0.33; Increased efficiency experiment: 1.11±0.32), with no significant effect of Scaling factor. The laterality index was affected by Pain such that the painful leg contributed less than the non-painful leg to the total force (Decreased efficiency experiment: 0.90±0.41, P<0.001; Increased efficiency experiment: 0.75±0.32, P<0.001), regardless of the efficiency (scaling factor) of the non-painful leg. When compared to the force produced during Baseline of the corresponding scaling condition, a decrease in force produced by the painful leg was observed for all conditions, except for scaling 0.25. This decrease in force was correlated with a decrease in drive to the soleus muscle. These data highlight that regardless of the overall mechanical cost, the nervous system appears to prefer to alter force sharing between limbs such that force produced by the painful leg is reduced relative to the non-painful leg.  相似文献   

2.
The purpose of this study was to determine the muscular contributions to the stepping phase of recovery from forward loss of balance in 5 young and 5 older adults that were able to recover balance in a single step, and 5 older adults that required multiple steps. Forward loss of balance was achieved by releasing participants from a static forward lean angle. All participants were instructed to attempt to recover balance by taking a rapid single step. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 94 muscle actuators were computed using static optimisation and induced acceleration analysis was used to compute individual muscle contributions to net lumbar spine joint, and stepping side hip joint and knee joint accelerations during recovery. Older adults that required multiple recovery steps used a significantly shorter and faster initial recovery step and adopted significantly more trunk flexion throughout recovery compared to the older single steppers. Older multiple steppers also produced significantly more force in the stance side hamstrings, which resulted in significantly higher hamstring induced flexion accelerations at the lumbar spine and extension accelerations at the hip. However since the net joint lumbar spine and hip accelerations remained similar between older multiple steppers and older single steppers, we suggest that the recovery strategy adopted by older multiple steppers was less efficient as well as less effective than for older single steppers.  相似文献   

3.
Although subjects with recurrent low back pain (LBP) demonstrate altered trunk control, the kinematic and kinetic responses of the trunk have not been carefully investigated. This study was conducted to compare the standing time, spine range of motion (ROM), and dynamic postural steadiness index (DPSI) based on visual condition between subjects with and without recurrent LBP during upright one leg standing. Sixty-three individuals participated in the study, including 34 control subjects and 29 subjects with recurrent LBP. The DPSI was a composite of the medio-lateral (MLSI), anterior-posterior (APSI), and vertical steadiness indices (VSI) on a force platform. The control group demonstrated longer standing time (s) during the eyes-open condition than the LBP group (26.82 ± 6.03 vs. 19.87 ± 9.36; t = 2.96, p = 0.01). Regarding spine ROM, visual condition was significantly different between groups (F = 7.09, p = 0.01) and demonstrated interactions with spine region and group (F = 5.53, p = 0.02). For the kinetic measures, there was a significant interaction between visual conditions and indices (F = 25.30, p = 0.001). In the LBP group, the DPSI was significantly correlated with the MLSI (r = 0.59, p = 0.002), APSI (r = 0.44, p = 0.03), and VSI (r = 0.98, p = 0.01) in the eyes-closed condition. Overall, the results of this study indicated that the LBP group decreased thorax and lumbar spine rotations during the eyes-closed condition. The LBP group also demonstrated positive correlations with the kinetic indices, enhancing dynamic postural steadiness in the eyes-closed condition in order to possibly avoid pain or further injury. This dynamic postural steadiness strategy is necessary to improve kinetic and kinematic chain reactions in the LBP group. This compensatory pattern supports the development of optimal postural correction strategies to prevent LBP recurrence and might represent a chain reaction to protect trunk control without visual input.  相似文献   

4.
Marshall, PWM, Desai, I, and Robbins, DW. Core stability exercises in individuals with and without chronic nonspecific low back pain. J Strength Cond Res 25(12): 3404-3411, 2011-The aim of this study was to measure trunk muscle activity during several commonly used exercises in individuals with and without low back pain (LBP). Abdominal bracing was investigated as an exercise modification that may increase the acute training stimulus. After an initial familiarization session, 10 patients with LBP and 10 matched controls performed 5 different exercises (quadruped, side bridge, modified push-up, squat, shoulder flexion) with and without abdominal bracing. Trunk muscle activity and lumbar range of motion (LROM) were measured during all exercises. Muscle activity was measured bilaterally during each exercise from rectus abdominis (RA), external obliques (EO), and lumbar erector spinae (ES) with pairs of surface electrodes. Recorded signals were normalized to a percentage of maximal voluntary contractions performed for each muscle. The ES activity was lower for the LBP group during the quadruped (p < 0.05) and higher for RA and EO during the side bridge (p < 0.001), compared to for the healthy controls. Higher muscle activity was observed across exercises in an inconsistent pattern when abdominal bracing was used during exercise. The LROM was no different between groups for any exercise. The lack of worsening of symptoms in the LBP group and similar LROM observed between groups suggest that all exercises investigated in this study are of use in rehabilitating LBP patients. The widespread use of abdominal bracing in clinical practice, whether it be for patients with LBP or healthy individuals, may not be justified unless symptoms of spinal instability are identified.  相似文献   

5.
Low back pain (LBP) is one of the most common symptoms reported in adults. However, the contribution of postural control on the lumbar spine and hips during squatting has not been carefully investigated in individuals with LBP. The aim of this study was to compare three-dimensional kinematic changes of the lumbar spine and hips between subjects with and without idiopathic chronic LBP during squatting activities. In total, 30 subjects enrolled in the study (15 control subjects and 15 subjects with idiopathic chronic LBP). All participants were asked to perform squatting activities five times repeatedly while holding a load of 2 kg in a basket. The outcome measures included the Oswestry Disability Index (ODI) and kinematic angular displacement for the hips and lumbar spine. The LBP group demonstrated increased range of motion (ROM) in flexion of the dominant (T = ?2.14, p = 0.03) and non-dominant (T = ?2.11, p = 0.03) hips during squatting. The lumbar spine flexion ROM significantly decreased (T = 2.20, p = 0.03). The kinematic changes demonstrated interactions with region × group (F = 5.56, p = 0.02), plane × group (F = 4.36, p = 0.04), and region × plane (F = 2292.47, p = 0.001). The ODI level demonstrated significant interaction on combined effects of body region and plane (F = 4.91, p = 0.03). Therefore, the LBP group utilized a compensation strategy to increase hip flexion with a stiffened lumbar spine in the sagittal plane during squatting. This compensatory kinematic strategy could apply to clinical management used to enhance lumbar spine flexibility in subjects with idiopathic chronic LBP.  相似文献   

6.
Exercise training programs can increase strength and improve submaximal force control, but the effects of yoga as an alternative form of steadiness training are not well described. The purpose was to explore the effect of a popular type of yoga (Bikram) on strength, steadiness, and balance. Young adults performed yoga training (n = 10, 29 +/- 6 years, 24 yoga sessions in 8 weeks) or served as controls (n = 11, 26 +/- 7 years). Yoga sessions consisted of 1.5 hours of supervised, standardized postures. Measures before and after training included maximum voluntary contraction (MVC) force of the elbow flexors (EF) and knee extensors (KE), steadiness of isometric EF and KE contractions, steadiness of concentric (CON) and eccentric (ECC) KE contractions, and timed balance. The standard deviation (SD) and coefficient of variation (CV, SD/mean force) of isometric force and the SD of acceleration during CON and ECC contractions were measured. After yoga training, MVC force increased 14% for KE (479 +/- 175 to 544 +/- 187 N, p < 0.05) and was unchanged for the EF muscles (219 +/- 85 to 230 +/- 72 N, p > 0.05). The CV of force was unchanged for EF (1.68 to 1.73%, p > 0.05) but was reduced in the KE muscles similarly for yoga and control groups (2.04 to 1.55%, p < 0.05). The variability of CON and ECC contractions was unchanged. For the yoga group, improvement in KE steadiness was correlated with pretraining steadiness (r = -0.62 to -0.84, p < 0.05); subjects with the greatest KE force fluctuations before training experienced the greatest reductions with training. Percent change in balance time for individual yoga subjects averaged +228% (19.5 +/- 14 to 34.3 +/- 18 seconds, p < 0.05), with no change in controls. For young adults, a short-term yoga program of this type can improve balance substantially, produce modest improvements in leg strength, and improve leg muscle control for less-steady subjects.  相似文献   

7.
In patients who experience unilateral chronic pain, abnormal sensory perception at the non-painful side has been reported. Contralateral sensory changes in these patients have been given little attention, possibly because they are regarded as clinically irrelevant. Still, bilateral sensory changes in these patients could become clinically relevant if they challenge the correct identification of their sensory dysfunction in terms of hyperalgesia and allodynia. Therefore, we have used the standardized quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain (DFNS) to investigate somatosensory function at the painful side and the corresponding non-painful side in unilateral neuropathic pain patients using gender- and age-matched healthy volunteers as a reference cohort. Sensory abnormalities were observed across all QST parameters at the painful side, but also, to a lesser extent, at the contralateral, non-painful side. Similar relative distributions regarding sensory loss/gain for non-nociceptive and nociceptive stimuli were found for both sides. Once a sensory abnormality for a QST parameter at the affected side was observed, the prevalence of an abnormality for the same parameter at the non-affected side was as high as 57% (for Pressure Pain Threshold). Our results show that bilateral sensory dysfunction in patients with unilateral neuropathic pain is more rule than exception. Therefore, this phenomenon should be taken into account for appropriate diagnostic evaluation in clinical practice. This is particularly true for mechanical stimuli where the 95% Confidence Interval for the prevalence of sensory abnormalities at the non-painful side ranges between 33% and 50%.  相似文献   

8.
This study aimed to clarify the differences in electromyographic activity between the quadratus lumborum anterior (QL-a) and posterior layers (QL-p), and the relationship among trunk muscles and gluteus medius (GMed) activities during forward landing. Thirteen healthy men performed double-leg and single-leg (ipsilateral or contralateral sides as the electromyography measurement of trunk muscles) forward landings from a 30 cm-height-box. The onset of electromyographic activity in pre-landing and the electromyographic amplitude of the unilateral QL-a, QL-p, abdominal muscles, lumbar multifidus (LMF), erector spinae (LES), and bilateral GMed were recorded. Two-way ANOVA was used to compare the onset of electromyographic activity (3 landing leg conditions × 10 muscles) and electromyographic amplitude among (3 landing leg conditions × 2 phases). The onset of QL-p was significantly earlier in contralateral-leg landing than in the double-leg and ipsilateral-leg landings. The onset of LMF and LES was significantly earlier than that of the abdominal muscles in contralateral-leg landing. QL-p activity and GMed activity on the contralateral leg side in the pre-landing were significantly higher in contralateral-leg landing than in the other leg landings. To prepare for pelvic and trunk movements after ground contact, LMF, LES, QL-p on non-support leg side, and GMed on support leg side showed early or high feedforward activation before ground contact during single-leg forward landing.  相似文献   

9.
Alterations in the lumbo-pelvic coordination denote changes in neuromuscular control of trunk motion as well as load sharing between passive and active tissues in the lower back. Differences in timing and magnitude aspects of lumbo-pelvic coordination between patients with chronic low back pain (LBP) and asymptomatic individuals have been reported; yet, the literature on lumbo-pelvic coordination in patients with acute LBP is scant. A case-control study was conducted to explore the differences in timing and magnitude aspects of lumbo-pelvic coordination between females with (n=19) and without (n=19) acute LBP. Participants in each group completed one experimental session wherein they performed trunk forward bending and backward return at preferred and fast paces. The amount of lumbar contribution to trunk motion (as the magnitude aspect) as well as the mean absolute relative phase (MARP) and deviation phase (DP) between thoracic and pelvic rotations (as the timing aspect) of lumbo-pelvic coordination were calculated. The lumbar contribution to trunk motion in the 2nd and the 3rd quarters of both forward bending and backward return phases was significantly smaller in the patient than the control group. The MARP and the DP were smaller in the patient vs. the control group during entire motion. The reduced lumbar contribution to trunk motion as well as the more in-phase and less variable lumbo-pelvic coordination in patients with acute LBP compared to the asymptomatic controls is likely the result of a neuromuscular adaptation to reduce painful deformation and to protect injured lower back tissues.  相似文献   

10.
The aim of the study was to investigate the prevalence of the nonspecific low back pain (LBP) in a population of schoolchildren in Maribor, north-eastern Slovenia. 100 children from an elementary school (age 11-15 y) and 90 children from a secondary school (age 17-18 y) were included in the study and investigated with a structured Watson questionnaire to assess low back pain prevalence, symptom characteristics, psychosocial factors, demographic, and anthropometric items. The data was statistically analysed using the SPSS software. 43% of children from elementary schools and 44% of children from secondary schools experienced back pain which lasted more than one day. No correlations between LBP and anthropometric items were found. Schoolchildren spend approximately 2 hours for learning, 2-3 hours for watching TV and approximately 2 hours for playing or working with the computer. Among important reasons for LBP, 44% of children mentioned carrying a school bag, 28% sitting on school chairs, and 18% intensive sport activity. Clinical examination of cervical, thoracic, and lumbar spine has shown that 12% of primary children and 12% of secondary children have increased cervical lordosis and 15% of primary schoolchildren have increased lumbar lordosis. In 5% of schoolchildren we found mild spinal scoliotic changes. Among our schoolchildren sedentary behaviour and low physical activity dominate. LBP may have an impact on their daily life, therefore it is important to recognise and treat it as soon as possible.  相似文献   

11.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

12.
Using anthropological methods, we measured the body height, length of the spine (ventral and dorsal), leg length, cord length. The data were evaluated statistically and we looked for correlation between leg length and body height, cord length and length of the spine, length of the spine and body height. On the basis of our results, we were able to determine the cord length for clinical use by computing the regression coefficient of leg length and spinal length.  相似文献   

13.

Background

Patellar tendinopathy (PT) is one of the most common knee disorders among athletes. Changes in morphology and elasticity of the painful tendon and how these relate to the self-perceived pain and dysfunction remain unclear.

Objectives

To compare the morphology and elastic properties of patellar tendons between athlete with and without unilateral PT and to examine its association with self-perceived pain and dysfunction.

Methods

In this cross-sectional study, 33 male athletes (20 healthy and 13 with unilateral PT) were enrolled. The morphology and elastic properties of the patellar tendon were assessed by the grey and elastography mode of supersonic shear imaging (SSI) technique while the intensity of pressure pain, self-perceived pain and dysfunction were quantified with a 10-lb force to the most painful site and the Victorian Institute of Sport Assessment-patella (VISA-P) questionnaire, respectively.

Results

In athletes with unilateral PT, the painful tendons had higher shear elastic modulus (SEM) and larger tendon than the non-painful side (p<0.05) or the dominant side of the healthy athletes (p<0.05). Significant correlations were found between tendon SEM ratio (SEM of painful over non-painful tendon) and the intensity of pressure pain (rho  = 0.62; p = 0.024), VISA-P scores (rho  = −0.61; p = 0.026), and the sub-scores of the VISA-P scores on going down stairs, lunge, single leg hopping and squatting (rho ranged from −0.63 to −0.67; p<0.05).

Conclusions

Athletes with unilateral PT had stiffer and larger tendon on the painful side than the non-painful side and the dominant side of healthy athletes. No significant differences on the patellar tendon morphology and elastic properties were detected between the dominant and non-dominant knees of the healthy control. The ratio of the SEM of painful to non-painful sides was associated with pain and dysfunction among athletes with unilateral PT.  相似文献   

14.
People with a history of low back pain (LBP) are at high risk to encounter additional LBP episodes. During LBP remission, altered trunk muscle control has been suggested to negatively impact spinal health. As sudden LBP onset is commonly reported during trunk flexion, the aim of the current study is to investigate whether dynamic trunk muscle recruitment is altered in LBP remission. Eleven people in remission of recurrent LBP and 14 pain free controls performed cued trunk flexion during a loaded and unloaded condition. Electromyographic activity was recorded from paraspinal (lumbar and thoracic erector spinae, latissimus dorsi, deep and superficial multifidus) and abdominal muscles (obliquus internus, externus and rectus abdominis) with surface and fine-wire electrodes. LBP participants exhibited higher levels of co-contraction of flexor/extensor muscles, lower agonistic abdominal and higher antagonistic paraspinal muscle activity than controls, both when data were analyzed in grouped and individual muscle behavior. A sub-analysis in people with unilateral LBP (n = 6) pointed to opposing changes in deep and superficial multifidus in relation to the pain side. These results suggest that dynamic trunk muscle control is modified during LBP remission, and might possibly increase spinal load and result in earlier muscle fatigue due to intensified muscle usage. These negative consequences for spinal health could possibly contribute to recurrence of LBP.  相似文献   

15.
The purpose of this study was to determine whether lower body negative pressure (LBNP) treadmill exercise maintains lumbar spinal compressive properties, curvature, and back muscle strength after 28 days of 6 degrees head-down tilt (HDT) bed rest (BR). We hypothesize that LBNP treadmill exercise will maintain lumbar spine compressibility, lumbar lordosis and back muscle strength after 28 days of 6 degrees HDT bed rest. Fifteen healthy identical twin pairs (14 women and 16 men) participated in this study. One identical twin was randomly assigned to the nonexercise control (Con) group, and their sibling was assigned to the exercise (Ex) group. The lumbar spine was significantly more compressible Post-BR compared with Pre-BR in the Con (P=0.01). Lumbar spine compressibility Post-BR was not significantly different compared with Pre-BR in the Ex group (P=0.89). In both the Con and Ex groups, there were no significant changes Post-BR in lumbar lordosis compared with Pre-BR. Back muscle strength significantly decreased in the Con group Post-BR (P=0.002), whereas in the Ex group back muscle strength was not significantly different from Pre-BR values. A significant increase in lumbar spine compressibility in the Con group suggests that spinal deconditioning to gravity occurs during 28-day bed rest. Changes in the mechanical properties of the lumbar spine may be an early indicator of lumbar intervertebral disk degeneration. Supine LBNP treadmill exercise provides axial loads to the lumbar spine and may prevent lumbar spine deconditioning associated with HDT bed rest.  相似文献   

16.
A clinical evaluation of indomethacin employing a controlled, cross-over technique with an inert placebo was undertaken in 30 patients with ankylosing spondylitis. Patients were studied for the frequency and dose relationship of side effects and for the subjective response of morning stiffness, chronic spinal pain, acute exacerbations of pain and peripheral arthralgia. Objective evaluation assessed measured change in movements of the cervical and lumbar spines, in chest expansion and in the range of movement of involved peripheral joints.Evaluation of the results indicated that a significant number of patients experienced side effects in the form of headache and dizziness while receiving indomethacin in doses above 150 mg. per day. Many other side effects reported by the patients were not found to occur at a statistically significant level. The significance of pulmonary infections encountered in three patients was reviewed. Relief of chronic spinal pain and peripheral arthralgia occurred in 14 and 16 patients, respectively (p < 0.05). Relief of morning stiffness and acute exacerbations of pain, and increase in the range of movement of any of the segments of the spine or the involved peripheral joints were not significant (p > 0.05). Based on the results of this study, it is suggested that the role of indomethacin in the management of ankylosing spondylitis be re-evaluated and that the daily therapeutic dose of this drug which has been heretofore recommended be decreased.  相似文献   

17.
The current study was undertaken to determine if age-related differences in muscle activities might relate to older adults being significantly less able than young adults to recover balance during a forward fall. Fourteen young and twelve older healthy males were released from forward leans of various magnitudes and asked to regain standing balance by taking a single forward step. Myoelectric signals were recorded from 12 lower extremity muscles and processed to compare the muscle activation patterns of young and older adults. Young adults successfully recovered from significantly larger leans than older adults using a single step (32.2° vs. 23.5°). Muscular latency times, the time between release and activity onset, ranged from 73 to 114 ms with no significant age-related differences in the shortest muscular latency times. The overall response muscular activation patterns were similar for young and older adults. However older adults were slower to deactivate three stance leg muscles and also demonstrated delays in activating the step leg hip flexors and knee extensors prior to and during the swing phase. In the forward fall paradigm studied, age-differences in balance recovery performance do not seem due to slowness in response onset but may relate to differences in muscle activation timing during the stepping movement.  相似文献   

18.

Purpose

To study the predictive value of preoperative magnetic resonance imaging (MRI) findings for the two-year postoperative clinical outcome in lumbar spinal stenosis (LSS).

Methods

84 patients (mean age 63±11 years, male 43%) with symptoms severe enough to indicate LSS surgery were included in this prospective observational single-center study. Preoperative MRI of the lumbar spine was performed with a 1.5-T unit. The imaging protocol conformed to the requirements of the American College of Radiology for the performance of MRI of the adult spine. Visual and quantitative assessment of MRI was performed by one experienced neuroradiologist. At the two-year postoperative follow-up, functional ability was assessed with the Oswestry Disability Index (ODI 0–100%) and treadmill test (0–1000 m), pain symptoms with the overall Visual Analogue Scale (VAS 0–100 mm), and specific low back pain (LBP) and specific leg pain (LP) separately with a numeric rating scale from 0–10 (NRS-11). Satisfaction with the surgical outcome was also assessed.

Results

Preoperative severe central stenosis predicted postoperatively lower LP, LBP, and VAS when compared in patients with moderate central stenosis (p<0.05). Moreover, severe stenosis predicted higher postoperative satisfaction (p = 0.029). Preoperative scoliosis predicted an impaired outcome in the ODI (p = 0.031) and lowered the walking distance in the treadmill test (p = 0.001). The preoperative finding of only one stenotic level in visual assessment predicted less postoperative LBP when compared with patients having 2 or more stenotic levels (p = 0.026). No significant differences were detected between quantitative measurements and the patient outcome.

Conclusions

Routine preoperative lumbar spine MRI can predict the patient outcome in a two-year follow up in patients with LSS surgery. Severe central stenosis and one-level central stenosis are predictors of good outcome. Preoperative finding of scoliosis may indicate worse functional ability.  相似文献   

19.
The deep core muscles are often neglected or improperly trained in athletes. Improper function of this musculature may lead to abnormal spinal loading, muscle strain, or injury to spinal structures, all of which have been associated with increased low back pain (LBP) risk. The purpose of this study was to identify potential strategies used to compensate for weakness of the deep core musculature during running and to identify accompanying changes in compressive and shear spinal loads. Kinematically-driven simulations of overground running were created for eight healthy young adults in OpenSim at increasing levels of deep core muscle weakness. The deep core muscles (multifidus, quadratus lumborum, psoas, and deep fascicles of the erector spinae) were weakened individually and together. The superficial longissimus thoracis was a significant compensator for 4 out of 5 weakness conditions (p < 0.05). The deep erector spinae required the largest compensations when weakened individually (up to a 45 ± 10% increase in compensating muscle force production, p = 0.004), revealing it may contribute most to controlling running kinematics. With complete deep core muscle weakness, peak anterior shear loading increased on all lumbar vertebrae (up to 19%, p = 0.001). Additionally, compressive spinal loading increased on the upper lumbar vertebrae (up to 15%, p = 0.007) and decreased on the lower lumbar vertebrae (up to 8%, p = 0.008). Muscular compensations may increase risk of muscular fatigue or injury and increased spinal loading over numerous gait cycles may result in damage to spinal structures. Therefore, insufficient strength of the deep core musculature may increase a runner’s risk of developing LBP.  相似文献   

20.
A quantitative study of the regional cerebral responses to non-painful and painful thermal stimuli in six normal volunteers has been done by monitoring serial measurements of regional blood flow measured by positron emission tomography (PET). In comparison to a baseline of warm stimulation no statistically significant changes in blood flow were seen in relation to increasing non-painful heat. However, highly significant increases in blood flow were seen in response to painful heat in comparison to non-painful heat. These changes were in the contralateral cingulate cortex, thalamus and lenticular nucleus. These findings are discussed in relation to previous physiological observations of responses to nociceptive stimuli in man and primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号