共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the objectives of microalgal culture is to provide reliable production technology for important live aquaculture feed organisms. Presented here are the results of experiments designed to provide a better understanding of the relationship between inorganic carbon availability and algal production.Our results suggest that through additions of CO2 gas we were able to maintain sufficient dissolved carbon to stabilize outdoor algal cultures. Increases in the rate of addition of CO2 increased levels of dissolved CO2, total dissolved inorganic carbon (CO2), and decreased pH in the growth medium. This translated into improved buffering capacity of the culture medium and higher growth rate. A minimum of 2.4 mM CO2 was found necessary to maintain a maximal growth rate of 0.7 doublings/day. We also found that the increased productivity more than offsets the cost of adding the CO2. 相似文献
2.
Samples of bulk precipitation were collected in the Trachypogon savanna, Calabozo, Venezuela, during three consecutive years. In the first year, rain samples were taken daily; in the following years the samples were grouped on a monthly basis. In addition, samples of dry deposition were collected during the dry seasons. All samples were analyzed for the following water soluble cations and anions: P04-P, S04-S, N03-N, NH4-N, Ca+2, Mg+2, K+, Na+ and H+. The mean annual input rate of chemical constituents (Kg ha-1 year-1) was: PO4-P (0.42); SO4-S (2.62); NO3-N (0.21); NH4-N (2.03); Ca+2 (3.50); Mg+2 (11.31); K+ (3.60); Na+ (5.93) and H+ (0.03). The total mean input of particulate material to the savanna during the dry season was 2.06 Kg ha-1 year-1, with a soluble fraction of 30%. Possible sources of nutrients input were analyzed. 相似文献
3.
Involvement of Exported Photosynthetic Products in the CO2Exchange of the Skeletal Shoots of Pine 总被引:1,自引:0,他引:1
Voronin P. Yu. Kaipiainen L. K. Bolondinskii V. K. Konovalov P. V. Hein H. Ya. Mokronosov A. T. 《Russian Journal of Plant Physiology》2001,48(2):143-147
CO2exchange in the leafy and skeletal parts of attached shoots of Pinus sylvestrisL. was measured with an infrared gas-analyzer in an open differential system during daylight hours. The 14CO2assimilation rates in the leafy parts of shoots and 14CO2evolution from current photosynthetic products in the lower skeletal part of shoots were measured in afternoons. Chlorophyll content was measured in the needles of the same shoot. The carbon of exported assimilates contributed only about 4% to CO2exchange in the heterotrophic tree tissues. Only this component of CO2evolution from the surface of the skeletal part of the tree was related to the losses of the net primary photosynthetic production (NPP) in the aboveground part of the pine stand during the current growth period. 相似文献
4.
Non-phototrophic CO
2
fixation by soil microorganisms 总被引:1,自引:0,他引:1
Anja Miltner Frank-Dieter Kopinke Reimo Kindler Draženka Selesi Anton Hartmann Matthias Kästner 《Plant and Soil》2005,269(1-2):193-203
Although soils are generally known to be a net source of CO2 due to microbial respiration, CO2 fixation may also be an important process. The non-phototrophic fixation of CO2 was investigated in a tracer experiment with 14CO2 in order to obtain information about the extent and the mechanisms of this process. Soils were incubated for up to 91 days
in the dark. In three independent incubation experiments, a significant transfer of radioactivity from 14CO2 to soil organic matter was observed. The process was related to microbial activity and could be enhanced by the addition
of readily available substrates such as acetate. CO2 fixation exhibited biphasic kinetics and was linearly related to respiration during the first phase of incubation (about
20–40 days). The fixation amounted to 3–5% of the net respiration. After this phase, the CO2 fixation decreased to 1–2% of the respiration. The amount of carbon fixed by an agricultural soil corresponded to 0.05% of
the organic carbon present in the soil at the beginning of the experiment, and virtually all of the fixed CO2 was converted to organic compounds. Many autotrophic and heterotrophic biochemical processes result in the fixation of CO2. However, the enhancement of the fixation by addition of readily available substrates and the linear correlation with respiration
suggested that the process is mainly driven by aerobic heterotrophic microorganisms. We conclude that heterotrophic CO2 fixation represents a significant factor of microbial activity in soils. 相似文献
5.
On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations 总被引:10,自引:0,他引:10
Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there
is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture
on (i) estimated rates of root and soil respiration and (ii) soil CO2 concentrations, during cycles of soil wetting and drying in the citrus rootstock, Volkamer lemon (Citrus volkameriana Tan. and Pasq.). Plants were grown in soil columns filled with three different soil mixtures varying in their sand, silt
and clay content. Root and soil respiration rates, soil water content, plant water uptake and soil CO2 concentrations were measured and dynamic relationships among these variables were developed for each soil texture treatment.
We found that although the different soil textures differed in their plant-soil water relations characteristics, plant growth
was only slightly affected. Root and soil respiration rates were similar under most soil moisture conditions for soils varying
widely in percentages of sand, silt and clay. Only following irrigation did CO2 efflux from the soil surface vary among soils. That is, efflux of CO2 from the soil surface was much more restricted after watering (therefore rendering any respiration measurements inaccurate)
in finer textured soils than in sandy soils because of reduced porosity in the finer textured soils. Accordingly, CO2 reached and maintained the highest concentrations in finer textured soils (> 40 mmol CO2 mol−1). This study revealed that changes in soil moisture can affect interpretations of root and soil measurements based on CO2 efflux, particularly in fine textured soils. The implications of the present findings for field soil CO2 flux measurements are discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
6.
Bouma Tjeerd J. Nielsen Kai L. Eissenstat David M. Lynch Jonathan P. 《Plant and Soil》1997,195(2):221-232
Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of short-term fluctuations of these three environmental factors on the relation between actual and observed root respiration rates. We designed an automated, open, gas-exchange system that allows continuous measurements on 12 chambers with intact roots in soil. By using three distinct chamber designs with each a different path for the air flow, we were able to measure root respiration over a 50-fold range of soil CO2 concentrations (400 to 25000 ppm) and to separate the effect of irrigation on observed vs. actual root respiration rate. All respiration measurements were made on one-year-old citrus seedlings in sterilized sandy soil with minimal organic material.Root respiration was strongly affected by diurnal fluctuations in temperature (Q10 = 2), which agrees well with the literature. In contrast to earlier findings for Douglas-fir (Qi et al., 1994), root respiration rates of citrus were not affected by soil CO2 concentrations (400 to 25000 ppm CO2; pH around 6). Soil CO2 was strongly affected by soil water content but not by respiration measurements, unless the air flow for root respiration measurements was directed through the soil. The latter method of measuring root respiration reduced soil CO2 concentration to that of incoming air. Irrigation caused a temporary reduction in CO2 diffusion, decreasing the observed respiration rates obtained by techniques that depended on diffusion. This apparent drop in respiration rate did not occur if the air flow was directed through the soil. Our dynamic data are used to indicate the optimal method of measuring root respiration in soil, in relation to the objectives and limitations of the experimental conditions. 相似文献
7.
Although CO2 efflux plays a critical role in carbon exchange between the biosphere and atmosphere, our understanding of its regulation by soil moisture is rather limited. This study was designed to examine the relationship between soil CO2 efflux and soil moisture in a natural ecosystem by taking advantage of the historically long drought period from 29 July to 21 September 2000 in the southern Central Great Plain, USA. At the end of August when soil moisture content at the top 50 mm was reduced to less than 50 g kg–1 gravimetrically, we applied 8 levels of water treatments (simulated to rainfall of 0, 10, 25, 50, 100, 150, 200, and 300 mm) with three replicates to 24 plots in a Tallgrass Prairie ecosystem in Central Oklahoma, USA. In order to quantify root-free soil CO2 efflux, we applied the same 8 levels of water treatments to 24 500-mm soil columns using soil from field adjacent to the experimental plots. We characterized dynamic patterns of soil moisture and soil CO2 efflux over the experimental period of 21 days. Both soil moisture content and CO2 efflux showed dramatic increases immediately after the water addition, followed by a gradual decline. The time courses in response to water treatments are well described by Y=Y0+ate–bt, where Y is either soil moisture or CO2 efflux, t is time, Y
0, a, and b are coefficients. Among the 8 water treatments, the maximal soil CO2 efflux rate occurred at the 50 mm water level in the field and 100 mm in the root-free soil 1 day after the treatment. The maximal soil CO2 efflux gradually shifted to higher water levels as the experiment continued. We found the relationship between soil CO2 efflux and soil moisture using the data from the 21-day experiment was highly scattered, suggesting complex mechanisms determining soil CO2 efflux by soil moisture. 相似文献
8.
Evaluation of soil respiration and soil CO2 concentration in a lowland moist forest in Panama 总被引:2,自引:0,他引:2
T. A. Kursar 《Plant and Soil》1989,113(1):21-29
Soil gas exchange was investigated in a lowland moist forest in Panama. Soil water table level and soil redox potentials indicate that the soils are not waterlogged. Substantial microspatial variation exists for soil respiration and soil CO2 concentration. During the rainy season, soil CO2 at 40 cm below the surface accumulates to 2.3%–4.6% and is correlated with rainfall during the previous two weeks. Temporal changes in soil CO2 are rapid, large and share similar trends between sampling points. Possible effects of soil CO2 changes on plant growth or phenology are discussed. 相似文献
9.
Luitgard Schwendenmann Edzo Veldkamp Tania Brenes Joseph J. O'Brien Jens Mackensen 《Biogeochemistry》2003,64(1):111-128
Our objectives were to quantify and compare soil CO2 efflux of two dominant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental factors on CO2 release. We measured soil CO2 efflux from eight permanent soil chambers on six Oxisol sites. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). At the same time we measured soil CO2 concentrations, soil water content and soil temperature at various depths in 6 soil shafts (3 m deep). Between old alluvium sites, the two-year average CO2 flux rates ranged from 117.3 to 128.9 mg C m–2 h–1. Significantly higher soil CO2 flux occurred on the residual sites (141.1 to 184.2 mg C m–2 h–1). Spatial differences in CO2 efflux were related to fine root biomass, soil carbon and phosphorus concentration but also to soil water content. Spatial variability in CO2 storage was high and the amount of CO2 stored in the upper and lower soil profile was different between old alluvial and residual sites. The major factor identified for explaining temporal variations in soil CO2 efflux was soil water content. During periods of high soil water content CO2 emission decreased, probably due to lower diffusion and CO2 production rates. During the 2-year study period inter-annual variation in soil CO2 efflux was not detected. 相似文献
10.
In many legume nodules, the H2 produced as a byproduct of N2 fixation diffuses out of the nodule and is consumed by the soil. To study the fate of this H2 in soil, a H2 treatment system was developed that provided a 300 cm3 sample of a soil:silica sand (2:1) mixture with a H2 exposure rate (147 nmol H2 cm–3hr–1) similar to that calculated exist in soils located within 1–4 cm of nodules (30–254 nmol H2 cm–3hr–1). After 3 weeks of H2 pretreatment, the treated soils had a Km and Vmax for H2 uptake (1028 ppm and 836 nmol cm–3 hr–1, respectively) much greater than that of control, air-treated soil (40.2 ppm and 4.35 nmol cm–3 hr–1, respectively). In the H2 treated soils, O2, CO2 and H2 exchange rates were measured simultaneously in the presence of various pH2. With increasing pH2, a 5-fold increase was observed in O2 uptake, and CO2 evolution declined such that net CO2 fixation was observed in treatments of 680 ppm H2 or more. At the H2 exposure rate used to pretreat the soil, 60% of the electrons from H2 were passed to O2, and 40% were used to support CO2 fixation. The effect of H2 on the energy and C metabolism of soil may account for the well-known effect of legumes in promoting soil C deposition. 相似文献
11.
Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest 总被引:1,自引:0,他引:1
Mi-sun Lee Kaneyuki Nakane Takayuki Nakatsubo Wen-hong Mo Hiroshi Koizumi 《Ecological Research》2002,17(3):401-409
The effects of rainfall events on soil CO2 fluxes were examined in a cool temperate Quercus/Betula forest in Japan. The soil CO2 fluxes were measured using an open-flow gas exchange system with an infrared gas analyzer in the snow-free season from August 1999 to November 2000. Soil CO2 flux showed no significant diurnal trend on days without rain. In contrast, rainfall events caused a significant increase in soil CO2 flux. To determine the effect of rainfall events and to evaluate more precisely the daily and annual soil carbon flux, we constructed a multiple polynomial regression model that included two variables, soil temperature and soil water content, using the soil CO2 flux data recorded on sunny days. Daily soil carbon fluxes on sunny days calculated by the model were almost the same as those determined by the field measurements. On the contrary, the fluxes measured on rainy days were significantly higher than those calculated daily from the soil carbon fluxes by the model. Annual soil carbon fluxes in 1999 and 2000 were estimated using models that both do and do not take rainfall effects into consideration. The result indicates that post-rainfall increases in soil CO2 flux represent approximately 16–21% of the annual soil carbon flux in this cool temperate deciduous forest. 相似文献
12.
Deserts are characterized by low productivity and substantial unvegetated space, which is often covered by soil microbial crust communities. Microbial crusts are important for nitrogen fixation, soil stabilization and water infiltration, but their role in ecosystem production is not well understood. This study addresses the following questions: what are the CO2 exchange responses of crusts to pulses of water, does the contribution of crusts to ecosystem flux differ from the soil respiratory flux, and is this contribution pulse size dependent? Following water application to crusts and soils, CO2 exchange was measured and respiration was partitioned through mixing model analysis of Keeling plots across treatments. Following small precipitation pulse sizes, crusts contributed 80% of soil-level CO2 fluxes to the atmosphere. However, following a large pulse event, roots and soil microbes contributed nearly 100% of the soil-level flux. Rainfall events in southern Arizona are dominated by small pulse sizes, suggesting that crusts may frequently contribute to ecosystem production. Carbon cycle studies of arid land systems should consider crusts as important contributors because of their dynamic responses to different pulse sizes as compared to the remaining ecosystem components. 相似文献
13.
Our investigations of diurnal variations of the 13C/12C ratio and CO2 content in soil air were carried out in three environments during periods of high biosphere activity. It has been observed that diurnal variation of CO2 concentration is negatively correlated 13. Particularly great variations occurred at shallow soil depths (10–30 cm) when the plant cover activity was high while the soil temperature was rather low. Under such conditions the 13 variations had the magnitude of 4, while the CO2 concentration varied more than doubly. The maximum of the 13C/12C ratlo and the minimum of the CO2 concentration in a cultivated field with winter wheat took place in the afternoon, whereas in deciduous forest similar patterns were observed at dawn. In these cases soil temperatures at 10 cm depths varied less than 2°C. Hence, under wheat the variation in root respiration rate seem to be the main reason of the recorded varations. In an uncultivated grass-field during the hottest period in summer we did not measure any distinct variations of CO2 properties in spite of the fact that soil temperature varied up to 5°C. This might be due to dominant microbial respiration at the high soil temperature, which exceeded 20°C. 相似文献
14.
Andrew D. Thomas 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1606):3076-3086
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. 相似文献
15.
The biodegradability of aerial material from a C4 plant, sorghum grown under ambient (345 µmol mol–1) and elevated (700 µmol mol–1) atmospheric CO2 concentrations were compared by measuring soil respiratory activity. Initial daily respiratory activity (measured over 10 h per day) increased four fold from 110 to 440 cm3 CO2 100g dry weight soil–1 in soils amended with sorghum grown under either elevated or ambient CO2. Although soil respiratory activity decreased over the following 30 days, respiration remained significantly higher (t-test;p>0.05) in soils amended with sorghum grown under elevated CO2 concentrations. Analysis of the plant material revealed no significant differences in C:N ratios between sorghum grown under elevated or ambient CO2. The reason for the differences in soil respiratory activity have yet to be elucidated. However if this trend is repeated in natural ecosystems, this may have important implications for C and N cycling. 相似文献
16.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3
- concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3
- concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3
- concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3
- consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days. 相似文献
17.
18.
Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent
to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems,
and leaves were analyzed for total N and 15N.
There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition,
leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial
heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests. 相似文献
19.
The [CO2] in the xylem of tree stems is typically two to three orders of magnitude greater than atmospheric [CO2]. In this study, xylem [CO2] was experimentally manipulated in saplings of sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) by allowing shoots severed from their root systems to absorb water containing [CO2] ranging from 0.04% to 14%. The effect of xylem [CO2] on CO2 efflux to the atmosphere from uninjured and mechanically injured, i.e., wounded, stems was examined. In both wounded and unwounded stems, and in both species, CO2 efflux was directly proportional to xylem [CO2], and increased 5-fold across the range of xylem [CO2] produced by the [CO2] treatment. Xylem [CO2] explained 76–77% of the variation in pre-wound efflux. After wounding, CO2 efflux increased substantially but remained directly proportional to internal stem [CO2]. These experiments substantiated our previous finding that stem CO2 efflux was directly related to internal xylem [CO2] and expanded our observations to two new species. We conclude that CO2 transported in the xylem may confound measurements of respiration based on CO2 efflux to the atmosphere. This study also provided evidence that the rapid increase in CO2 efflux observed after tissues are excised or injured is likely the result of the rapid diffusion of CO2 from the xylem, rather than an actual increase in the rate of respiration of wounded tissues. 相似文献
20.
Soil CO2 efflux is a major component of net ecosystem productivity (NEP) of forest systems. Combining data from multiple researchers for larger-scale modeling and assessment will only be valid if their methodologies provide directly comparable results. We conducted a series of laboratory and field tests to assess the presence and magnitude of soil CO2 efflux measurement system × environment interactions. Laboratory comparisons were made with a dynamic, steady-state CO2 flux generation apparatus, wherein gas diffusion drove flux without creating pressure differentials through three artificial soil media of varying air-filled porosity. Under these conditions, two closed systems (Li-6400-09 and SRC-1) exhibited errors that were dependent on physical properties of the artificial media. The open system (ACES) underestimated CO2 flux. However, unlike the two other systems, the ACES results could be corrected with a single calibration equation that was unaffected by physical differences in artificial media. Both scale and rank changes occurred among the measurement systems across four sites. Our work clearly shows that soil CO2 efflux measurement system × environment interactions do occur and can substantially impact estimates of soil CO2 efflux. Until reliable calibration techniques are developed and applied, such interactions make direct comparison of published rates, and C budgets estimated using such rates, difficult. 相似文献