首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过生物大分子之间的特异性结合,采用表面等离激元共振技术监测,报导了支撑于固体表面脂单层膜上进行的亲和素、生物素标记的质粒DNA、以及从系统性红斑狼疮患者血清中获得的抗DNA抗体多层膜的有序组装。这种生物大分子的组装技术可以用于生物传感器以检测特定的抗原抗体。  相似文献   

2.
通过生物大分子之间的特异性结合,采用表面等离激元共振技术监测,报导了支撑于固体表面脂单层膜上进行的亲和素、生物素标记的质粒DNA,以及从系统性红斑狼疮患者血清中获得的抗DNA抗体多层膜的有序组装。这种生物大分子的组装技术可以用于生物传感器以检测特定的抗原抗体。  相似文献   

3.
Spatially ordered multilayer thin films containing anti-fluoresceinisothiocyanate (anti-FITC) were prepared on the surface of a quartz slide to study the binding properties of the multilayer films. A quartz slide was treated in solutions of avidin and biotin-labeled anti-FITC alternately and repeatedly to form multilayer thin films through a strong affinity between avidin and biotin. A spectrophotometric study revealed explicitly that the thin films thus prepared consisted of alternate monomolecular layers of avidin and biotin-labeled anti-FITC. The antibody retained its binding activity to antigen in the multilayer thin film, though the antigen could not access the antibody embedded deep in the multilayer film. Only the outermost four or five layers of antibody were involved in the binding of antigen.  相似文献   

4.
L Luo  J Liu  Z Wang  X Yang  S Dong  E Wang 《Biophysical chemistry》2001,94(1-2):11-22
Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyldimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD).  相似文献   

5.
We report the preparation, characterization, and mechanical properties of DNA/poly(allylamine hydrochloride) (PAH) multilayer microcapsules. The DNA/PAH multilayers were first constructed on a planar support to examine their layer-by-layer buildup. Surface plasmon resonance spectroscopy (SPR) showed a nonlinear growth of the assembly upon each bilayer deposited independently on a concentration of salt. A weak increase in the film thickness with the DNA concentration was, however, detected. A post-treatment of the multilayers in the salt solutions has shown a thinning of the film. The optimal conditions of the planar film growth were used to deposit the same multilayers on the surface of colloidal templates and to study their roughness and morphology with the atomic force microscope (AFM) imaging. When an outer layer is formed by DNA, we observe large domains of oriented parallel DNA loops, while an outer layer formed by PAH shows highly porous morphology. The dissolution of colloidal templates led to a formation of highly porous DNA/PAH microcapsules. We probe their mechanical properties by measuring force-deformation curves with the AFM-related setup. The experiment suggests that the DNA/PAH capsules are softer than capsules made from the flexible polyelectrolytes studied before. The softening is due to both higher permeability and smaller Young's modulus of the shell material. The Young's modulus of the DNA/PAH shells increases after post-treatment in salt solutions of relatively low concentration.  相似文献   

6.
The high-density attachment of active antibodies or other recognition molecules to the capture surface is one of the fundamental processes in route to developing effective biosensors. One method applied frequently to enzymatic sensor systems has been the layer-by-layer assembly of the bioactive surface. Cui et al. [Cui, X., Pei, R., Wang, Z., Yang, F., Ma, Y., Dong, S., Yang, X., 2003. Biosens. Bioelectron. 18, 59–67] extended this concept to immunosensors, where they formed multilayers composed of avidin and biotinylated antibody and reported this construct to be a potent way to form an effective surface for surface plasmon resonance biodetection. We reexamined this concept in an effort to establish a simple method to improve the activity of polystyrene capture surfaces used in sandwich fluoroimmunoassays for the detection of the target, staphylococcal enterotoxin B (SEB). Using multilayers prepared by alternating between NeutrAvidin and either biotinylated mono or polyclonal anti-SEB antibody, we found that virtually all the SEB-binding activity was derived from the final layer added; and that additional layers provided no observable enhancement in fluoroimmunoassay signal strength.  相似文献   

7.
An immunosensor based on surface plasmon resonance (SPR) using protein G was developed for the detection of Salmonella typhimurium. A protein G layer was fabricated by binding chemically to self-assembly monolayer (SAM) of 11-mercaptoundecanoic acid (MUA) on gold (Au) surface. The formation of protein G layer on Au surface modified with 11-MUA and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The effect of detergent such as Tween-20 on binding efficiency of antibody and antigen was investigated by SPR. The binding efficiency of antigen to the antibody immobilized on Au surface was improved up to about 85% and 100% by using protein G and Tween-20, respectively. The surface morphology analyses of 11-MUA monolayer on Au substrate, protein G layer on 11-MUA monolayer and antibody layer immobilized on protein G layer were performed by atomic force microscope (AFM). Consequently, an immunosensor based on SPR for the detection of S. typhimurium using protein G was developed with a detection range of 10(2) to 10(9)CFU/ml. The current fabrication technique of a SPR immunosensor for the detection of S. typhimurium could be applied to construct other immnosensors or protein chips.  相似文献   

8.
The effect of pH on the stability of layer-by-layer deposited polygalacturonic acid (PGalA)-based multilayer films prepared with the polycations poly-L-lysine, chitosan, and lysozyme is studied. The response was characterized using a quartz crystal microbalance, dual polarization interferometry, and Fourier transform infrared spectroscopy which probe multilayer thickness, density, polymer mass (composition and speciation), and hydration. All multilayers showed irreversible changes in response to pH change becoming thinner due to the partial disassembly. Preferential loss of the polycation (50-80% w/w) and relative small losses of PGaLA (10-35% w/w) occurred. The charge density on the polycation has a strong influence on the response to the acid cycle. Most of the disassembly takes place at the pH lower that pK(a) of PGaLA, indicating that this factor was crucial in determining the stability of the films. The pH challenge also revealed a polycation-dependent shift to acid pH in the PGaLA pK(a).  相似文献   

9.
The orientation of antibody was controlled by using NeutrAvidin-protein A complex on the gold surface of SPR biosensor. The surface density of receptor antibody (anti-hIgG) was compared by treatment of receptor antibody to the layer of avidin, NeutrAvidin, protein A, NeutrAvidin-protein A complex and bare gold surface of SPR biosensor. The ligand antibody (hIgG) was injected to each IA layer and the binding ratio of ligand antibody per unit receptor was estimated as a parameter of orientation control. The NeutrAvidin-protein A complex on gold surface of SPR biosensor showed the highest surface density of receptor antibody as well as the binding ratio of ligand antibody per receptor antibody. The NeutrAvidin-protein A complex was also prepared on biotin-labelled SAM, and the binding ratio of ligand per receptor was found to be significantly improved in comparison to the IA layer prepared by chemical coupling of receptor antibody to the SAM layer. The NeutrAvidin-protein A complex which showed the highest efficiency for the binding of ligand antibodies, was applied for the detection of a cancer marker called CEA. By using NeutrAvidin-protein A complex and sandwich assay for signal amplification, sensitivity was improved to be 1.5-fold higher than bare gold surface and the detection of CEA with the detection limit of 30 ng/ml was achieved.  相似文献   

10.
The effect of pectin esterification on the assembly of multilayers consisting of poly-L-lysine (PLL) and pectin was studied using surface plasmon resonance (SPR), Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR), and a quartz crystal microbalance with dissipation monitoring (QCMD). With each layer deposited, there was a progressive increase in mass. The net charge of the multilayers was positive and increased with increasing degree of esterification of the pectin. Multilayer fabrication involved a limited fractionation of the pectin preparations, with the more highly esterified pectins having a weaker affinity for PLL. The multilayers were relatively hydrated structures with estimates of solids content in the range 10-32% w/w. The more highly esterified pectins had a tendency to form more hydrated structures, which showed a strong deswelling when PLL was added to a freshly deposited pectin layer.  相似文献   

11.
Surface plasmon resonance (SPR) spectroscopy can provide useful information regarding average structural properties of membrane films supported on planar solid substrates. Here we have used SPR spectroscopy for the first time to monitor the binding and activation of G-protein (transducin or Gt) by bovine rhodopsin incorporated into an egg phosphatidylcholine bilayer deposited on a silver film. Rhodopsin incorporation into the membrane, performed by dilution of a detergent solution of the protein, proceeds in a saturable manner. Before photolysis, the SPR data show that Gt binds tightly (Keq approximately equal to 60 nM) and with positive cooperativity to rhodopsin in the lipid layer to form a closely packed film. A simple multilayer model yields a calculated average thickness of about 57 A, in good agreement with the structure of Gt. The data also demonstrate that Gt binding saturates at a Gt/rhodopsin ratio of approximately 0.6. Moreover, upon visible light irradiation, characteristic changes occur in the SPR spectrum, which can be modeled by a 6 A increase in the average thickness of the lipid/protein film caused by formation of metarhodopsin II (MII). Upon subsequent addition of GTP, further SPR spectral changes are induced. These are interpreted as resulting from dissociation of the alpha-subunit of Gt, formation of new MII-Gt complexes, and possible conformational changes of Gt as a consequence of complex formation. The above results clearly demonstrate the ability of SPR spectroscopy to monitor interactions among the proteins associated with signal transduction in membrane-bound systems.  相似文献   

12.
In the present work the layer-by-layer nano-assembly technique was used for the development of complex catalytic microparticles on the basis of firefly luciferase (FL). FL films containing 1, 2, or 3 monolayers were assembled on silver electrode QCM-resonators and on 520-nm diameter sulfonated polystyrene latex by alternate adsorption of FL and polycations using electrostatic interactions for the interlayer interaction. The assembly process was studied with quartz crystal microbalance, UV-vis spectroscopy, and microelectrophoresis (surface potential). Structural studies of the resulting multilayers confirmed stepwise deposition of FL and cationic poly(dimethyldiallyl ammonium chloride) with a bilayer thickness of 14 nm; a systematic shift of the surface potential from +28 mV for poly(dimethyldiallyl ammonium chloride) to -14 mV for luciferase outermost layer was established. The functionality and stability of the biocolloids were demonstrated by monitoring the intensity of the light emission. Factors influencing the light emitted upon catalytic activity of FL such as the number of luciferase layers in the film and polyion layer at the outermost layer were studied.  相似文献   

13.
Self-assembled multilayers comprised of alternate layers of polyphenol oxidase (PPO) and poly(allylamine) (PAH) or PPO and poly(diallyldimethylamine) (PDDA), deposited on a 3-mercaptopropanesulfonic acid (MPS)-modified gold surface, were studied "in-situ" (under water) by means of ellipsometry and quartz crystal microbalance (QCM), and "ex-situ" (in open air) by ellipsometry and fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS). Optical ellipsometric properties of (PAH)(n)(PPO)(n) and (PDDA)(n)(PPO)(n) multilayers were obtained at two wavelengths, employing an isotropic single-layer model with the substrate parameters measured after thiol adsorption. Film thickness as well as ellipsometric mass values based on the de Feijter equation were also evaluated. The quartz crystal impedance analysis showed that self-assembled multilayers behaved as acoustically thin films, and therefore, the shifts observed in the film inductive impedance parameter were interpreted in terms of gravimetric mass. The enzyme mass up-take in each adsorption step was determined on PAH or on PDDA topmost layer. A comparative study between the ellipsometric thickness and acoustic mass values allowed us to obtain average values of "apparent" densities of (2.1 +/- 0.1) and (2.4 +/- 0.1) g cm(-3) for (PAH)(n)(PPO)(n) and (PDDA)(n)(PPO)(n) multilayers, respectively. The content of water included in the open polymer-enzyme structure was evaluated by comparison of QCM and ellipsometric mass values. FT-IRRAS spectra of each layer in (PAH)(n)(PPO)(n) and (PDDA)(n)(PPO)(n) films were recorded, and the intensity ratio of the amide bands was evaluated to obtain information about layer-by-layer enzyme conformation. An enzyme/polycation distribution model for (PAH)(n)(PPO)(n)and (PDDA)(n)(PPO)(n) multilayer structures is presented on the basis of combined ellipsometric, QCM, and FT-IRRAS results.  相似文献   

14.
Homopolynucleotides--poly(adenylic acid), poly(A), and poly(uridylic acid), poly(U)--were assembled, layer-by-layer, into thin films with poly(ethylenimine), PEI. Various combinations and sequences of polynucleotide and PEI were used to highlight contributions of electrostatic versus hydrogen bonding as driving forces for multilayer build-up. Assembly of alternating poly(A) and poly(U) failed to yield growing films, due to excessively strong interactions between these complimentary strands. The surface morphology of multilayers depended on the deposition order and whether films had been annealed by salt. Films assembled from preformed A/U duplexes (having high persistence lengths) were very smooth. Individual adsorption steps, followed by optical waveguide light-mode spectroscopy, showed that only complementary polynucleotides adsorb by H-bonding to the surface of a growing multilayer. In contrast to behavior usually observed for polyelectrolyte multilayer build-up, the films decreased in thickness with increasing salt concentration.  相似文献   

15.
He P  Li M  Hu N 《Biopolymers》2005,79(6):310-323
With the isoelectric point at pH 7.4, hemoglobin (Hb) has net positive surface charges at pH 5.0 and overall negative charges at pH 9.0, and is essentially neutral at pH 7.0. The fifth-generation poly(propyleneimine) (PPI) dendrimer is usually positively charged in aqueous solution. The {PPI/Hb}n films under different pH conditions have been successfully fabricated on various solid surfaces by the layer-by-layer assembly technique, and the growth of films was monitored by ultraviolet-visible (UV-vis) spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). Not only was the negatively charged Hb at pH 9.0 alternately adsorbed with positively charged PPI onto solid substrates by electrostatic attraction between them, but the positively charged Hb at pH 5.0 was also successfully assembled with like charged PPI into layer-by-layer {PPI/Hb(pH 5.0)}n films. For the latter, the localized electrostatic interaction or the charge reversal of proteins on PPI surface may be the main driving force. For {PPI/Hb(pH 7.0)}n films, however, the hydrophobic/hydrophilic interaction may play a more important role in the assembly, making the amount of adsorbed Hb even less than that of {PPI/Hb(pH 5.0)}n films. For comparison, negatively charged catalase (Cat) at pH 8.0 was used to assemble layer-by-layer films with positive PPI, but {PPI/Cat}n films showed quite different properties from {PPI/Hb}n films. UV-vis and infrared (IR) spectroscopy, QCM, ellipsometry, and voltammetry were utilized to characterize the {PPI/protein}n films. The results suggest that the proteins in the multilayer films retain their near-native structure and display good voltammetric response for heme Fe(III)/Fe(II) redox couples at underlying pyrolytic graphite (PG) electrodes. Electrocatalysis of oxygen and hydrogen peroxide based on direct electrochemistry of heme proteins at {PPI/protein}n film electrodes was also demonstrated.  相似文献   

16.
Cholesterol biosensors prepared by layer-by-layer technique   总被引:5,自引:0,他引:5  
The analysis of formation, deposition and characterization of cholesterol oxidase (COX) layer-by-layer films were performed. Initially, a layer of polyanion, poly(styrene sulfonate) (PSS) was adsorbed followed by a layer of polycation, poly(ethylene imine) (PEI) on each solid substrate from aqueous solutions. The alternating layers were formed by consecutive adsorption of polycations (PEI) and negatively charged proteins (COX) and cholesterol esterase (CE). A strong interaction between protein and polyelectrolyte improves the stability of the alternating multilayer; however, it can change a native protein conformation and impair the protein activity. The PSS/PEI/COX, PSS/PEI/COX/PEI/CE, PSS/PEI/COX-CE/PEI etc. layered structures were prepared on the surface of a platinum electrode, ITO coated glass plate, quartz crystal microbalance, quartz plates, mica and silicon substrates. Optical and gravimetric measurements based on an ultraviolet–visible absorption spectroscopy and a quartz crystal microbalance revealed that the enzyme multilayers thus prepared consist of molecular layered of the proteins. The surface morphology of such bilayer films was investigated by using atomic force microscopy. The electrochemical redox processes of the enzyme-layered films deposited either on platinum or ITO coated glass plate were investigated. The response current of cholesterol oxidase electrode with concentration of cholesterol was investigated at length.  相似文献   

17.
Hu X  Ji J 《Biomacromolecules》2011,12(12):4264-4271
A convenient and simple route to multifunctional surface coatings via the alternating covalent layer-by-layer (LBL) assembly of p-nitrophenyloxycarbonyl group-terminated hyperbranched polyether (HBPO-NO(2)) and polyethylenimine (PEI) is described. The in situ chemical reaction between HBPO-NO(2) and PEI onto aminolyzed substrates was rapid and mild. Results from ellipsometry measurements, contact angle measurements, and ATR-FTIR spectra confirmed the successful LBL assembly of the building blocks, and the surface reactivity of the multilayer films with HBPO-NO(2) as the outmost layer was demonstrated by the immobilization of an amine-functionalized fluorophore. Furthermore, a biomimetic surface was achieved by surface functionalization of the multilayer films with extracellular matrix protein collagen to promote the adhesion and growth of cells. The studies on the drug loading and in vitro release behaviors of the multilayer films demonstrated their application potentials in local delivery of hydrophilic and hydrophobic therapeutic agents.  相似文献   

18.
X-Ray diffraction was used to characterize the profile structures of ultrathin lipid multilayers having a bound surface layer of cytochrome c. The lipid multilayers were formed on an alkylated glass surface, using the Langmuir-Blodgett method. The ultrathin lipid multilayers of this study were: five monolayers of arachidic acid, four monolayers of arachidic acid with a surface monolayer of dimyristoyl phosphatidylserine, and four monolayers of arachidic acid acid with a surface monolayer of thioethyl stearate. Both the phosphatidylserine and the thioethyl stearate surfaces were found previously to covalently bind yeast cytochrome c, while the arachidic acid surface electrostatically binds yeast cytochrome c. Meridional x-ray diffraction data were collected from these lipid multilayer films with and without a bound yeast cytochrome c surface layer. A box refinement technique, previously shown to be effective in deriving the profile structures of ultrathin multilayer lipid films with and without electrostatically bound cytochrome c, was used to determine the multilayer electron density profiles. The surface monolayer of bound cytochrome c was readily apparent upon comparison of the multilayer electron density profiles for the various pairs of ultrathin multilayer films plus/minus cytochrome c for all cases. In addition, cytochrome c binding to the multilayer surface significantly perturbs the underlying lipid monolayers.  相似文献   

19.
Jiang B  Defusco E  Li B 《Biomacromolecules》2010,11(12):3630-3637
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.  相似文献   

20.
A surface plasmon resonance (SPR) based immunosensor using self-assembled protein G was developed for the detection of Salmonella paratyphi. In order to endow a solid substrate binding affinity to protein G, the free amine (-NH2) of protein G was substituted into thiol (-SH) using 2-iminothiolane. Thus, self-assembled protein G was fabricated on gold (Au) substrate. The formation of protein G layer on Au surface, and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The surface morphology analysis of the protein G layer on Au surface was performed by atomic force microscope (AFM). Consequently, an immunosensor based on SPR for the detection of S. paratyphi using self-assembled protein G was developed with a detection range of 10(2)-10(7) CFU/ml. The current fabrication technique of a SPR immunosensor for the detection of S. paratyphi could be applied to construct other immnosensors or protein chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号