首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.  相似文献   

2.
We currently face both an extinction and a biome crisis embedded in a changing climate. Many biodiverse ecosystems are being lost at far higher rates than they are being protected or ecologically restored. At the same time, natural climate solutions offer opportunities to restore biodiversity while mitigating climate change. The Bonn Challenge is a U.N. programme to restore biodiversity and mitigate climate change through restoration of the world's degraded landscapes. It provides an unprecedented chance for ecological restoration to become a linchpin tool for addressing many environmental issues. Unfortunately, the Forest and Landscape Restoration programme that underpins the Bonn Challenge, as its name suggests, remains focused on trees and forests, despite rising evidence that many non‐forest ecosystems also offer strong restoration potential for biodiversity and climate mitigation. We see a need for restoration to step back to be more inclusive of different ecosystem types and to step up to provide integrated scientific knowledge to inform large‐scale restoration. Stepping back and up will require assessments of where to restore what species, with recognition that in many landscapes multiple habitat types should be restored. In the process, trade‐offs in the delivery of different ecosystem services (e.g. carbon, biodiversity, water, albedo, livestock forage) should be clearly addressed. We recommend that biodiversity safeguards be included in policy and implemented in practice, to avoid undermining the biophysical relationships that provide ecosystem resilience to climate change. For ecological restoration to contribute to international policy goals will require integrated large‐scale science that works across biome boundaries.  相似文献   

3.
Climate change has far‐reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short‐term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems.  相似文献   

4.
Human population growth and the improving condition of human populations in developing countries affect ecological health and integrity. Agricultural development co-opts increasing amounts of global primary production, degrading lands, and reducing species richness. The development of human populations and associated increasing demands for energy assures disposal for increasing amounts of waste, further damaging local ecosystems. Global climate change resulting from diffuse pollutants will affect even the most pristine ecosystems. The human challenge is to maintain ecological integrity and restore ecosystems in the face of accelerating development. The present level of ecosystem protection in not sufficient. Only integrated means of assessing recovery potential and acting to restore ecological productivity can assure continued availability of ecosystem services ranging from free production of food and fiber by plants and animals to final waste assimilation. Restoring ecosystems presumes that species sources are available and that adequate management is in place to monitor and manage recovery. Today, even in the most advanced societies, management is fragmented by non-integrative thinking and the failure to realize that the human scale of political decision-making and management is inappropriate to assure ecosystem restoration. Only by adopting radically new ideas integrating management and ecosystem science can ecological integrity be maintained.  相似文献   

5.
In most cases the negative impacts of climate change to aquatic ecosystems cannot be mitigated by measures in the river basin management. Ignoring climate change by the Water Framework Directive may have strong implications for the typology and quality assessment systems used for water bodies. As a result of climate change, water bodies, especially those located near the type boundaries may change their type. Compared to typology characteristics, water quality parameters are even more labile and may be easily affected by climate change. The paper exemplifies that the anticipated deterioration of water quality within the time frame relevant for WFD implementation may be large enough to endanger the fulfillment of the set water quality objectives. The review of the river basin characterization every six years, as required by the WFD, might also include re-evaluation of reference conditions according to the changes observed at pristine reference sites. As a consequence, the restoration targets (i.e., the good ecological status) would also need to be evaluated periodically.  相似文献   

6.
In the context of climate change, many plant species may have problems adapting or dispersing rapidly enough to keep pace with changing environmental conditions. Given these potential problems, some experts argue against using local plant ecotypes for ecosystem restoration. Instead, they propose to use foreign ecotypes that are adapted to the predicted climate in an approach called assisted migration within species range or predictive provenancing. I argue that such actions may cause a mismatch in biotic interactions and have negative effects on other organisms. As such, assisted migration should only be considered in cases when the local ecotypes would fail to ensure ecosystem services. In fact, there is little experimental evidence on the assisted migration approach so far, and what little there is does not seem to support its use. Even in altered climates, local ecotypes mostly performed equally well or better than foreign ones selected for their adaptations to these climates. The reason is that even if adaptation to climate plays a role, this factor may be overridden by other drivers of local adaptation, such as soil or biotic interactions. Despite assisted migration being a popular concept that is repeatedly commended in scientific literature and propagated among practitioners, it should not be considered a universal tool to improve restoration outcomes during climate change. Given the lack of hard experimental data, I call for large‐scale multispecies experimental studies that will provide the necessary evidence to derive general guidelines and recommendations for management of ecosystems during climate change.  相似文献   

7.
Past abrupt ‘regime shifts’ have been observed in a range of ecosystems due to various forcing factors. Large‐scale abrupt shifts are projected for some terrestrial ecosystems under climate change, particularly in tropical and high‐latitude regions. However, there is very little high‐resolution modelling of smaller‐scale future projected abrupt shifts in ecosystems, and relatively less focus on the potential for abrupt shifts in temperate terrestrial ecosystems. Here, we show that numerous climate‐driven abrupt shifts in vegetation carbon are projected in a high‐resolution model of Great Britain's land surface driven by two different climate change scenarios. In each scenario, the effects of climate and CO2 combined are isolated from the effects of climate change alone. We use a new algorithm to detect and classify abrupt shifts in model time series, assessing the sign and strength of the non‐linear responses. The abrupt ecosystem changes projected are non‐linear responses to climate change, not simply driven by abrupt shifts in climate. Depending on the scenario, 374–1,144 grid cells of 1.5 km × 1.5 km each, comprising 0.5%–1.5% of Great Britain's land area show abrupt shifts in vegetation carbon. We find that abrupt ecosystem shifts associated with increases (rather than decreases) in vegetation carbon, show the greatest potential for early warning signals (rising autocorrelation and variance beforehand). In one scenario, 89% of abrupt increases in vegetation carbon show increasing autocorrelation and variance beforehand. Across the scenarios, 81% of abrupt increases in vegetation carbon have increasing autocorrelation and 74% increasing variance beforehand, whereas for decreases in vegetation carbon these figures are 56% and 47% respectively. Our results should not be taken as specific spatial or temporal predictions of abrupt ecosystem change. However, they serve to illustrate that numerous abrupt shifts in temperate terrestrial ecosystems could occur in a changing climate, with some early warning signals detectable beforehand.  相似文献   

8.
Riparian ecosystems are hotspots for ecological restoration globally because of the disproportionately high value and diversity of the ecological functions and services which they support and their high level of vulnerability to anthropogenic pressures, including climate change. Degraded riparian ecosystems are associated with many serious anthropogenic problems including increased river bank erosion, water quality decline, increased flood risk and biodiversity loss. Conventional approaches to riparian restoration, however, are frequently too narrow in focus – spatially, temporally, ecologically and socially – to adequately or equitably address the goals to which they aspire. Climate change, along with the intensification of other human pressures, means that static, historically oriented restoration objectives focused solely on prior ecological composition and structure are unlikely to be defensible, achievable or appropriate in the Anthropocene. Conversely, open‐ended restoration strategies lacking clear objectives and targets entail substantial risks such as significant biodiversity losses, especially of native species. A functional approach to planning and prioritising riparian restoration interventions offers an intermediate alternative that is still framed by measurable targets but allows for greater consideration of broader temporal, spatial and cultural influences. Here, we provide an overview of major riparian functions across multiple scales and identify key drivers of, and threats to, these. We also discuss practical approaches to restoring and promoting riparian functions and highlight some key concerns for the development of policy and management of robust riparian restoration in the Anthropocene.  相似文献   

9.
随着气候变化影响广度与深度的增加,生态系统脆弱性、适应性与突变理论逐渐被广泛应用到生态学研究领域中,探讨和评估各类生态系统对气候变化的敏感性、脆弱性和适应性,可谋求更好的方式来应对气候变化对区域生态系统带来的深远影响,服务于国家生态系统可持续管理及生态安全建设。虽然相关研究已获取许多进展,区分了气候敏感区和某些生态系统的潜在转折点,但是学界对这些概念尚存在多种的理解和阐释,这一定程度上影响了相关理论的进一步发展与应用。针对此,本文梳理了相关概念的发展历程,并从生态系统生态学角度深入剖析了这些概念内涵,进一步提出了基于生态系统演变机理的生态系统脆弱性和适应性及突变理论框架和相应的计算方法,以期推动生态系统脆弱性、适应性与突变理论深入发展。  相似文献   

10.
With a focus on the Danum Valley area of Sabah, Malaysian Borneo, this special issue has as its theme the future of tropical rainforests in a changing landscape and climate. The global environmental context to the issue is briefly given before the contents and rationale of the issue are summarized. Most of the papers are based on research carried out as part of the Royal Society South East Asia Rainforest Research Programme. The issue is divided into five sections: (i) the historical land-use and land management context; (ii) implications of land-use change for atmospheric chemistry and climate change; (iii) impacts of logging, forest fragmentation (particularly within an oil palm plantation landscape) and forest restoration on ecosystems and their functioning; (iv) the response and resilience of rainforest systems to climatic and land-use change; and (v) the scientific messages and policy implications arising from the research findings presented in the issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号