首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
Techniques for assessing knee joint pain in arthritis   总被引:1,自引:0,他引:1  

Background

In general, opioids that induce the recycling of μ-opioid receptors (MORs) promote little desensitization, although morphine is one exception to this rule. While morphine fails to provoke significant internalization of MORs in cultured cells, it does stimulate profound desensitization. In contrast, morphine does promote some internalization of MORs in neurons although this does not prevent this opioid from inducing strong antinociceptive tolerance.

Results

In neurons, morphine stimulates the long-lasting transfer of MOR-activated Gα subunits to proteins of the RGS-R7 and RGS-Rz subfamilies. We investigated the influence of this regulatory process on the capacity of morphine to promote desensitization and its association with MOR recycling in the mature nervous system. In parallel, we also studied the effects of [D-Ala2, N-MePhe4, Gly-ol5] encephalin (DAMGO), a potent inducer of MOR internalization that promotes little tolerance. We observed that the initial exposure to icv morphine caused no significant internalization of MORs but rather, a fraction of the Gα subunits was stably transferred to RGS proteins in a time-dependent manner. As a result, the antinociception produced by a second dose of morphine administered 6 h after the first was weaker. However, this opioid now stimulated the phosphorylation, internalization and recycling of MORs, and further exposure to morphine promoted little tolerance to this moderate antinociception. In contrast, the initial dose of DAMGO stimulated intense phosphorylation and internalization of the MORs associated with a transient transfer of Gα subunits to the RGS proteins, recovering MOR control shortly after the effects of the opioid had ceased. Accordingly, the recycled MORs re-established their association with G proteins and the neurons were rapidly resensitized to DAMGO.

Conclusion

In the nervous system, morphine induces a strong desensitization before promoting the phosphorylation and recycling of MORs. The long-term sequestering of morphine-activated Gα subunits by certain RGS proteins reduces the responses to this opioid in neurons. This phenomenon probably increases free Gβγ dimers in the receptor environment and leads to GRK phosphorylation and internalization of the MORs. Although, the internalization of the MORs permits the transfer of opioid-activated Gα subunits to the RGSZ2 proteins, it interferes with the stabilization of this regulatory process and recycled MORs recover the control on these Gα subunits and opioid tolerance develops slowly.  相似文献   

2.
Opioid agonists display different capacities to stimulate mu-opioid receptor (MOR) endocytosis, which is related to their ability to provoke the phosphorylation of specific cytosolic residues in the MORs. Generally, opioids that efficiently promote MOR endocytosis and recycling produce little tolerance, as is the case for [d-Ala2, N-MePhe4,Gly-ol5] encephalin (DAMGO). However, morphine produces rapid and profound antinociceptive desensitization in the adult mouse brain associated with little MOR internalization. The regulator of G-protein signaling, the RGS14 protein, associates with MORs in periaqueductal gray matter (PAG) neurons, and when RGS14 is silenced morphine increased the serine 375 phosphorylation in the C terminus of the MOR, a GRK substrate. Subsequently, these receptors were internalized and recycled back to the membrane where they accumulated on cessation of antinociception. These mice now exhibited a resensitized response to morphine and little tolerance developed. Thus, in morphine-activated MORs the RGS14 prevents GRKs from phosphorylating those residues required for β-arresting-mediated endocytosis. Moreover morphine but not DAMGO triggered a process involving calcium/calmodulin-dependent kinase II (CaMKII) in naïve mice, which contributes to MOR desensitization in the plasma membrane. In RGS14 knockdown mice morphine failed to activate this kinase. It therefore appears that phosphorylation and internalization of MORs disrupts the CaMKII-mediated negative regulation of these opioid receptors.  相似文献   

3.
The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca(2+)-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance.  相似文献   

4.
μ-Type opioid receptors (MORs) are members of the large seven-transmembrane receptor family which transduce the effects of both endogenous neuropeptides and clinically important opioid drugs. Prolonged activation of MORs promotes their proteolytic degradation by endocytic trafficking to lysosomes. This down-regulation process is known to contribute to homeostatic regulation of cellular opioid responsiveness, but mechanisms that mediate and control MOR down-regulation have not been defined. We show here that lysosomal down-regulation of MORs is ESCRT (endosomal sorting complex required for transport)-dependent and involves ubiquitin-promoted transfer of internalized MORs from the limiting endosome membrane to lumen. We also show that MOR down-regulation measured by conventional radioligand binding assay is determined specifically by ubiquitination in the first cytoplasmic loop. Surprisingly, we were unable to find any role of ubiquitination in determining whether internalized receptors recycle or are delivered to lysosomes. Instead, this decision is dictated specifically by the MOR C-tail and occurs irrespectively of the presence or absence of receptor ubiquitination. Our results support a hierarchical organization of discrete ubiquitin-independent and -dependent sorting operations, which function non-redundantly in the conserved down-regulation pathway to mediate precise endocytic control. Furthermore, they show that this hierarchical mechanism discriminates the endocytic regulation of naturally occurring MOR isoforms. Moreover, they are the first to reveal, we believe, for any seven-transmembrane receptor, a functional role of ubiquitination in the first cytoplasmic loop.  相似文献   

5.
He SQ  Zhang ZN  Guan JS  Liu HR  Zhao B  Wang HB  Li Q  Yang H  Luo J  Li ZY  Wang Q  Lu YJ  Bao L  Zhang X 《Neuron》2011,69(1):120-131
δ-opioid receptors (DORs) form heteromers with μ-opioid receptors (MORs) and negatively regulate MOR-mediated spinal analgesia. However, the underlying mechanism remains largely unclear. The present study shows that the activity of MORs can be enhanced by preventing MORs from DOR-mediated codegradation. Treatment with DOR-specific agonists led to endocytosis of both DORs and MORs. These receptors were further processed for ubiquitination and lysosomal degradation, resulting in a reduction of surface MORs. Such effects were attenuated by treatment with an interfering peptide containing the first transmembrane domain of MOR?(MOR(TM1)), which interacted with DORs and disrupted the MOR/DOR interaction. Furthermore, the systemically applied fusion protein consisting of MOR(TM1) and TAT at the C terminus could disrupt the MOR/DOR interaction in the mouse spinal cord, enhance the morphine analgesia, and reduce the antinociceptive tolerance to morphine. Thus, dissociation of MORs from DORs in the cell membrane is?a potential strategy to improve opioid analgesic therapies.  相似文献   

6.
In mouse periaqueductal gray matter (PAG) membranes, the mu-opioid receptor (MOR) coprecipitated the alpha-subunits of the Gi/o/z/q/11 proteins, the Gbeta1/2 subunits, and the regulator of G-protein signaling RGS9-2 and its partner protein Gbeta5. RGS7 and RGS11 present in this neural structure showed no association with MOR. In vivo intracerebroventricular injection of morphine did not alter MOR immunoreactivity, but 30 min and 3 h after administration, the coprecipitation of Galpha subunits with MORs was reduced by up to 50%. Furthermore, the association between Galpha subunits and RGS9-2 proteins was increased. Twenty-four hours after receiving intracerebroventricular morphine, the Galpha subunits left the RGS9-2 proteins and re-associated with the MORs. However, doses of the opioid able to induce tolerance promoted the stable transfer of Galpha subunits to the RGS9-2 control. This was accompanied by Ser phosphorylation of RGS9-2 proteins, which increased their co-precipitation with 14-3-3 proteins. In the PAG membranes of morphine-desensitized mice, the capacity of the opioid to stimulate G-protein-related guanosine 5'-O-(3-[35S]thiotriphosphate) binding as well as low Km GTPase activity was attenuated. The in vivo knockdown of RGS9-2 expression prevented morphine from altering the association between MORs and G-proteins, and tolerance did not develop. In PAG membranes from RGS9-2 knockdown mice, morphine showed full capacity to activate G-proteins. Thus, the tolerance that develops following an adequate dose of morphine is caused by the stabilization and retention of MOR-activated Galpha subunits by RGS9-2 proteins. This multistep process is initiated by the morphine-induced transfer of MOR-associated Galpha subunits to the RGS9-2 proteins, followed by Ser phosphorylation of the latter and their binding to 14-3-3 proteins. This regulatory mechanism probably precedes the loss of MORs from the cell membrane, which has been observed with other opioid agonists.  相似文献   

7.
Activation of opioid receptors by morphine was previously shown to specifically induce the expression of chemokine receptor CCR5, promoting simian AIDS virus entry and replication in immune cells. The present study was undertaken to determine whether these two structurally and functionally distinct G-protein-coupled receptors are in close proximity and form an oligomeric complex in the cell membrane so that the activation of one triggers the activity of the other. Both human CEM ×174 and monkey lymphocytes were used in this study and gave similar results. Immunoprecipitation experiments showed that CCR5, but not CD4 nor Na+/H+ exchanger, coprecipitates with all three subtypes (mu, delta, and kappa) of opioid receptors. A single protein band immunoreactive with antibodies against both the CCR5 and the opioid receptors was identified after electrophoresis on nondenaturing polyacrylamide gels. Chemical crosslinking experiments using glutaraldehyde or BS3 indicate that these receptors are closely situated on the cell membrane with an intermolecular distance less than 11.4Å. Functional studies revealed that a combination treatment of cells with morphine, an agonist for mu, and MIP-1β, a ligand for CCR5, suppresses the inhibitory effect of MIP-1β and increases the stimulatory effect of morphine on CCR5 expression. These results suggest that oligomerization of chemokine receptor CCR5 and opioid receptors on the cell membrane of human or monkey lymphocytes may modulate receptor functions.  相似文献   

8.
Oral mucositis is one of the most common side effects of chemoradiation regimens and manifestation can be dose-limiting for the therapy, can impair the patient''s nutritional condition and quality of life due to severe pain. The therapeutic options are limited; often only an alleviation of the symptoms such as pain reduction by using systemic opioids is possible. Stimulating opioid receptors on peripheral neurons and dermal tissue, potent analgesic effects are induced e.g. in skin grafted patients. Advantageous effects on the cell migration and, thus, on the wound healing process are described, too. In this study, we investigated whether opioid receptors are also expressed on oral epithelial cells and if morphine can modulate their cell migration behavior. The expression of the opioid receptors MOR, DOR and KOR on primary human oral epithelial cells was verified. Furthermore, a significantly accelerated cell migration was observed following incubation with morphine. The effect even slightly exceeded the cell migration stimulating effect of TGF-ß: After 14 h of morphine treatment about 86% of the wound area was closed, whereas TGF-ß application resulted in a closed wound area of 80%. With respect to morphine stimulated cell migration we demonstrate that DOR plays a key role and we show the involvement of the MAPK members Erk 1/2 and p38 using Western blot analysis.Further studies in more complex systems in vitro and in vivo are required. Nevertheless, these findings might open up a new therapeutic option for the treatment of oral mucositis.  相似文献   

9.
As a first step in our search for new opiates, we have established cellular assays to monitor opioid receptor activation and study the activities of a set of morphine derivatives. Intracellular calcium changes were monitored in human embryonic kidney-293 T cells expressing individual opioid receptors upon cotransfection with a chimeric G protein. This assay was validated by comparing the potencies of the endogenous peptides to reported values. All of the opiates were found to interact with the three opioid receptor subtypes but with a range of differences in efficacies and potencies. Most of the opiates preferentially acted at the μ receptor. None of the opiates showed a preference for the δ receptor. Only oripavine and its precursor thebaine showed a preference for the κ over the μ receptor. The results indicate that the opiates with a C-3 hydroxyl group or C-6 ketone group but in the presence of a 7, 8-single bond exhibit higher activity. It is noteworthy that the 6-O-methyl group seems to improve the selectivity for κ receptor. This is the first comparative and comprehensive report on the activation of the three different opioid receptors by a set of morphine derivatives in a well-defined assay system. These data can serve as a basis for the characterization of novel opiates.  相似文献   

10.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

11.

Background

Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated.

Results

Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also impaired the analgesic effects of cannabinoids.

Conclusion

In the brain, cannabinoids can produce analgesic tolerance that is not associated with the loss of surface CB1Rs or their uncoupling from regulated transduction. Neural specific Gz proteins are essential mediators of the analgesic effects of supraspinal CB1R agonists and morphine. These Gz proteins are also responsible for the long-term analgesic tolerance produced by single doses of these agonists, as well as for the cross-tolerance between CB1Rs and MORs.  相似文献   

12.
In response to the unexpectedly high affinity for opioid receptors observed in a novel series of cyclazocine analogues where the prototypic 8-OH was replaced by a carboxamido group, we have prepared the corresponding 3-CONH(2) analogues of morphine and naltrexone. High affinity (K(i)=34 and 1.7nM) for mu opioid receptors was seen, however, the new targets were 39- and 11-fold less potent than morphine and naltrexone, respectively.  相似文献   

13.
Opioid tolerance and the emergence of new opioid receptor-coupled signaling   总被引:2,自引:0,他引:2  
Multiple cellular adaptations are elicited by chronic exposure to opioids. These include diminution of spare opioid receptors, decreased opioid receptor density, and G-protein content and coupling thereof. All imply that opioid tolerance is a manifestation of a loss of opioid function, i.e., desensitization. Recent observations challenge the exclusiveness of this formulation and indicate that opioid tolerance also results from qualitative changes in opioid signaling. In this article, Gintzler and Chakrabarti discuss the evidence that suggests that opioid tolerance results not only from impaired opioid receptor functionality, but also from altered consequences of coupling. Underlying the latter are fundamental changes in the nature of effectors that are coupled to the opioid receptor/G-protein signaling pathway. These molecular changes include the upregulation of adenylyl cyclase isoforms of the type II family as well as a substantial increase in their phosphorylation state. As a result, there is a shift in opioid receptor/G-protein signaling from predominantly G inhibitory to Gβγ stimulatory following chronic in vivo morphine exposure. These adaptations to chronic morphine indicate the plasticity of opioid-signal transduction mechanisms and the ability of chronic morphine to augment new signaling strategies.  相似文献   

14.
The main analgesic effects of the opioid alkaloid morphine are mediated by the mu-opioid receptor. In contrast to endogenous opioid peptides, morphine activates the mu-opioid receptor without causing its rapid endocytosis. Recently, three novel C-terminal splice variants (MOR1C, MOR1D, and MOR1E) of the mouse mu-opioid receptor (MOR1) have been identified. In the present study, we show that these receptors differ substantially in their agonist-selective membrane trafficking. MOR1 and MOR1C stably expressed in human embryonic kidney 293 cells exhibited phosphorylation, internalization, and down-regulation in the presence of the opioid peptide [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO) but not in response to morphine. In contrast, MOR1D and MOR1E exhibited robust phosphorylation, internalization, and down-regulation in response to both DAMGO and morphine. DAMGO elicited a similar desensitization (during an 8-h exposure) and resensitization (during a 50-min drug-free interval) of all four mu-receptor splice variants. After morphine treatment, however, MOR1 and MOR1C showed a faster desensitization and no resensitization as compared with MOR1D and MOR1E. These results strongly reinforce the hypothesis that receptor phosphorylation and internalization are required for opioid receptor reactivation thus counteracting agonist-induced desensitization. Our findings also suggest a mechanism by which cell- and tissue-specific C-terminal splicing of the mu-opioid receptor may significantly modulate the development of tolerance to the various effects of morphine.  相似文献   

15.
A pharmacological characterization has been performed of the opioid receptor involved in modulation of phagocytosis in the protozoan ciliate Tetrahymena. Studies on inhibition of phagocytosis by mammalian prototypic opioid agonists revealed that morphine and β-endorphin have the highest intrinsic activity, whereas all the other opioids tested can only be considered partial agonists. However, morphine (a mu-receptor agonist) is twice as potent as β-endorphin (a delta-receptor agonist). Furthermore, the sensitivity for the opioid antagonist naloxone, determined in the presence of morphine and β-endorphin, is very similar to the sensitivity exhibited by mammalian tissues rich in mu-opioid receptors. We suggest that the opioid receptor coupled to phagocytosis in Tetrahymena is mulike in some of its pharmacological characteristics and may serve as a model system for studies on opioid receptor function and evolution.  相似文献   

16.
It has been known that co-administration of morphine with either cholecystokinin (CCK) receptor or melanocortin (MC) receptor antagonists enhance morphine’s analgesic efficacy by reducing serious side effects such as tolerance and addiction.1, 2, 3, 4 Considering these synergistic effects, we have designed trivalent ligands in which all three different pharmacophores for opioid, CCK, and MC receptors are combined in such a way as to conserve their own topographical pharmacophore structures. These ligands, excluding the cyclic compound, were synthesized by solid phase synthesis using Rink-amide resin under microwave assistance in very high yields. These trivalent ligands bind to their respective receptors well demonstrating that the topographical pharmacophore structures for the three receptors were retained for receptor binding. Ligand 10 was a lead compound to show the best biological activities at all three receptors.  相似文献   

17.
Abstract

Opioid receptors mediate multiple biological functions through their interaction with endogenous opioid peptides as well as opioid alkaloids including morphine and etorphine. Previously we have reported that the ability of distinct opioid agonists to differentially regulate μ-opioid receptor (μOR) responsiveness is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the receptor (1). In the present study, we further examined the role of GRK and β-arrestin in agonist-specific regulation of the δ-opioid receptor (δOR). While both etorphine and morphine effectively activate the δOR, only etorphine triggers robust δOR phosphorylation followed by plasma membrane translocation of β-arrestin and receptor internalization. In contrast, morphine is unable to either elicit δOR phosphorylation or stimulate β-arrestin translocation, correlating with its inability to cause δOR internalization. Unlike for the μOR, overexpression of GRK2 results in neither the enhancement of δOR sequestration nor the rescue of δOR-mediated β-arrestin translocation. Therefore, our findings not only point to the existence of marked differences in the ability of different opioid agonists to promote δOR phosphorylation by GRK and binding to β-arrestin, but also demonstrate differences in the regulation of two opioid receptor subtypes. These observations may have important implications for our understanding of the distinct ability of various opioids in inducing opioid tolerance and addiction.  相似文献   

18.
The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine''s rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We found no significant changes in binding potential (BPND) of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND). Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward.  相似文献   

19.
7-Hydroxymitragynine is a potent opioid analgesic alkaloid isolated from the Thai medicinal herb Mitragyna speciosa. In the present study, we investigated the opioid receptor subtype responsible for the analgesic effect of this compound. In addition, we tested whether development of tolerance, cross-tolerance to morphine and naloxone-induced withdrawal signs were observed in chronically 7-hydroxymitragynine-treated mice. Subcutaneous (s.c.) administration of 7-hydroxymitragynine produced a potent antinociceptive effect mainly through activation of mu-opioid receptors. Tolerance to the antinociceptive effect of 7-hydroxymitragynine developed as occurs to morphine. Cross-tolerance to morphine was evident in mice rendered tolerant to 7-hydroxymitragynine and vice versa. Naloxone-induced withdrawal signs were elicited equally in mice chronically treated with 7-hydroxymitragynine or morphine. 7-Hydroxymitragynine exhibited a potent antinociceptive effect based on activation of mu-opioid receptors and its morphine-like pharmacological character, but 7-hydroxymitragynine is structurally different from morphine. These interesting characters of 7-hydroxymitragynine promote further investigation of it as a novel lead compound for opioid studies.  相似文献   

20.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa. We previously reported the morphine-like action of mitragynine and its related compounds in the in vitro assays. In the present study, we investigated the opioid effects of 7-hydroxymitragynine, which is isolated as its novel constituent, on contraction of isolated ileum, binding of the specific ligands to opioid receptors and nociceptive stimuli in mice. In guinea-pig ileum, 7-hydroxymitragynine inhibited electrically induced contraction through the opioid receptors. Receptor-binding assays revealed that 7-hydroxymitragynine has a higher affinity for micro-opioid receptors relative to the other opioid receptors. Administration of 7-hydroxymitragynine (2.5-10 mg/kg, s.c.) induced dose-dependent antinociceptive effects in tail-flick and hot-plate tests in mice. Its effect was more potent than that of morphine in both tests. When orally administered, 7-hydroxymitragynine (5-10 mg/kg) showed potent antinociceptive activities in tail-flick and hot-plate tests. In contrast, only weak antinociception was observed in the case of oral administration of morphine at a dose of 20 mg/kg. It was found that 7-hydroxymitragynine is a novel opioid agonist that is structurally different from the other opioid agonists, and has potent analgesic activity when orally administered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号