首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The aim of the study was to relate the effects of deficiency and excess of Mn with the generation of reactive oxygen species (ROS) and altered cellular redox environment in mulberry (Morus alba L.) cv. Kanva-2 plants. Mn deficiency symptom appeared as mild interveinal chlorosis in middle leaves. Mn-excess did not produce any specific symptom. Leaf water potential (Ψ) was increased in Mn-deficient and Mn-excess mulberry plants. Mn-deficient leaves contained less Mn, less chloroplastic pigments and high tissue Fe, Zn and Cu concentrations. Starch content was increased with increasing Mn supply. While reducing sugar content increased in Mn-deficient and Mn-excess plants as well, non-reducing sugars remained unaffected in Mn-deficient plants and decreased in Mn-excess plants. Moreover, study of antioxidative responses, oxidative stress (H2O2 and lipid peroxidation) and cellular redox environment [dehydroascorbate (DHA)/ascorbic acid (AsA) ratio] in Mn-stressed mulberry plants was also undertaken. Both hydrogen peroxide and lipid peroxidation were enhanced in the leaves of Mn-deficient plants. Increased H2O2 concentration in Mn-excess leaves did not induce oxidative damage as indicated by no change in lipid peroxidation. The ratio of the redox couple (DHA/AsA) was increased both in Mn-deficient or Mn-excess plants. The activities of superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) increased in Mn-deficient plants. The activity of ascorbate peroxidase (EC 1.11.1.11) increased with increasing Mn supply. The results suggest that deficiency or excess of Mn induces oxidative stress through enhanced ROS generation and disturbed redox couple in mulberry plants.  相似文献   

2.
The aim of this study was to associate the generation of reactive oxygen species (ROS) with Induced antloxidant responses and disturbed cellular redox environment in the nitrogen-(N), phosphorus-(P), or potassium-(K) deftcient mulberry (Morus alba L. var. Kanva-2) plants. The indicators of oxidative stress and cellular redox environment and antioxldant defense-related parameters were analyzed. Oeficlency of N, P or K suppressed growth, accelerated senescence, and decreased concentrations of chloroplastic pigments and glutathione. Lipid peroxidation and activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase were also increased in these N, P, or K deprived plants. Concentration of hydrogen peroxide Increased in plants deficient in N or P. Oeficlency of N or P particularly altered the cellular redox environment as indicated by changes in the redox couples, namely ascorbic acid/total ascorbate decreased in P-, glutathione sulfydryl/total glutathione decreased in N-, and Increased in P-deficient plants. Activity staining of native gels for superoxide dismutase revealed Increased activity as Indicated by Increased intensity of bands, and induction of few new isoforms in P- and K-deficient plants. Oifferences in the patterns of superoxide dismutase isoforms and redox status (ascorbic acid/total ascorbate and glutathlone sulfydryl/total glutathione) Indicate that N-, P-, or K-deficiency altered antioxidant responses to varying extents in mulberry plants.  相似文献   

3.
Activities of Cu-containing proteins in Cu-depleted pea leaves   总被引:1,自引:0,他引:1  
The effect of Cu deficiency on Cu-containing enzymes and on their activities was studied with two subsequent generations of Cu-deficient pea plants ( Pisum sativum L., cv. Progress) grown in low Cu2+ media. Cu deficiency caused growth inhibition and a decrease in photosynthesis as well as in the activities of 3 Cu-containing enzymes: diamine oxidase (EC 1.4.3.6), ascorbate oxidase (EC 1.10.3.3) and superoxide dismutase (EC 1.15.1.1). Determinations of photosynthetic electron-transport rates as well as the concentrations of several redox components showed that the target of Cu deprivation in the photosynthetic apparatus is the synthesis of Cu-containing plastocyanin which is positively correlated to the Cu content of the leaves. Inhibited formation of plastocyanin resulted in low activities of photosynthetic electron transport in photosystem I. Under Cu-deficient conditions, the activities of diamine oxidase and ascorbate oxidase were inhibited by about 50% in the first and 80% in the second generation of pea plants. Enzyme assays showed an inhibition of the activities of both the plastidic and cytoplasmic Cu/Zn-containing superoxide dismutases. An observed simultaneous increase of Mn-superoxide dismutase may be a compensation mechanism to partially maintain the total superoxide-dismutase activity under Cu-deficient conditions. This result indicates that the formation of superoxide-dismutase isoenzymes is interdependent and coordinated.  相似文献   

4.
In this study, we examined the modulation of Cu toxicity-induced oxidative stress by excess supply of iron in Zea mays L. plants. Plants receiving excess of Cu (100 μM) showed decreased water potential and simultaneously showed wilting in the leaves. Later, the young leaves exhibited chlorosis and necrotic scorching of lamina. Excess of Cu suppressed growth, decreased concentration of chloroplastic pigments and fresh and dry weight of plants. The activities of peroxidase (EC 1.11.1.7; POD), ascorbate peroxidase (EC 1.11.1.11; APX) and superoxide dismutase (EC 1.15.1.1; SOD) were increased in plants supplied excess of Cu. However, activity of catalase (EC 1.11.1.6; CAT), was depressed in these plants. In gel activities of isoforms of POD, APX and SOD also revealed upregulation of these enzymes. Excess (500 μM)-Fe-supplemented Cu-stressed plants, however, looked better in their phenotypic appearance, had increased concentration of chloroplastic pigments, dry weight, and improved leaf tissue water status in comparison to the plants supplied excess of Cu. Moreover, activities of antioxidant enzymes including CAT were further enhanced and thiobarbituric acid reactive substance (TBARS) and H2O2 concentrations decreased in excess-Fe-supplemented Cu-stressed plants. In situ accumulation of H2O2, contrary to that of O2 ·− radical, increased in both leaf and roots of excess-Cu-stressed plants, but Cu-excess plants supplied with excess-Fe showed reduced accumulation H2O2 and little higher of O2 ·− in comparison to excess-Cu plants. It is, therefore, concluded that excess-Cu (100 μM) induces oxidative stress by increasing production of H2O2 despite of increased antioxidant protection and that the excess-Cu-induced oxidative damage is minimized by excess supply of Fe.  相似文献   

5.
Development of three copper metalloenzymes in clover leaves   总被引:2,自引:1,他引:1       下载免费PDF全文
Subterranean clover (Trifolium subterraneum L. cv Seaton Park) was grown in solution cultures containing adequate nitrogen both with and without Cu. After Cu deficiency had developed, Cu2+ was added to some deficient plants and Cu content, protein content, and activities of three Cu metalloenzymes (diamine oxidase [EC1.4.3.6], ascorbate oxidase [EC1.10.3.3] and o-diphenol oxidase [EC1.10.3.1]) were assayed in young and recently matured leaf blades over 11 days during the development of the next three leaves.

Copper deficiency had little effect on protein concentrations, but markedly depressed enzyme activities and Cu concentration in all leaf blades assayed. Within 4 d of adding Cu2+ to Cu-deficient plants, Cu concentrations of all the leaf blades increased to adequate values. Enzyme activities only increased to control levels in leaves which had not yet emerged at the time that Cu2+ was added.

The results suggest that active holoenzymes of diamine oxidase, ascorbate oxidase, and o-diphenol oxidase can only be synthesized in leaf blades during very early stages of their development.

  相似文献   

6.
Andrea Polle 《Planta》1996,198(2):253-262
It is generally believed that a restricted export of carbohydrates from source leaves causes oxidative stress because of an enhanced utilisation of O2 instead of NADP+ as electron acceptor in photosynthesis. To test this hypothesis, developmental changes of antioxidative systems were investigated in wild-type and transgenic tobacco (Nicotiana tabacum L.) suffering from disturbed sink-source relations by expression of yeast invertase in the apoplastic space. Young expanding leaves of the wild type contained higher activities of Superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), glutathione reductase (EC 1.6.4.2) and a higher glutathione content than mature source leaves. The activity of monodehydroascorbate-radical reductase (EC 1.1.5.4) and the ascorbate content remained unaffected by the developmental stage in the wild type. In young expanding leaves of the transgenic plants the capacity of the antioxidative systems was similar to or higher than in corresponding leaves from the wild type. Source leaves of transgenic tobacco with an increased carbohydrate content showed a small chlorophyll loss, an increased malondialdehyde content, a selective loss of the activities of Cu/Zn-superoxide dismutase isoenzymes and a fourfold decrease in ascorbate compared with the wild type. There was no evidence that the protection from H2O2 was insufficient since source leaves of transgenic tobacco contained increased activities of catalase, ascorbate peroxidase, and monodehydroascorbate-radical reductase and an increased ascorbate-to-dehydroascorbate ratio compared with source leaves of the wild type. In severely chlorotic leaf sections of the transgenic plants, most components of the antioxidative system were lower than in green leaf sections, but the ascorbate-to-dehydroascorbate ratio was increased. These results suggest that carbohydrate-accumulating cells have an increased availability of reductant, which can increase the degree of reduction of the ascorbate system via glutathione-related systems or via the activity of monodehydroascorbate-radical reductase. At the same time, transgenic tobacco leaves seem to suffer from an increased oxidative stress, presumably as a result of a decreased consumption of O 2 .- by Cu/Zn-superoxide dismutases in the chloroplasts. There was no evidence that carbohydrate-accumulating leaves acclimated to enhanced O 2 .- production rates in the chloroplasts.  相似文献   

7.
Higher plant antioxidants and redox signaling under environmental stresses   总被引:5,自引:0,他引:5  
Main antioxidants in higher plants include glutathione, ascorbate, tocopherol, proline, betaine, and others, which are also information-rich redox buffers and important redox signaling components that interact with biomembrane-related compartments. As an evolutionary consequence of aerobic life for higher plants, reactive oxygen species (ROS) are formed by partial reduction of molecular oxygen. The above enzymatic and non-enzymatic antioxidants in higher plants can protect their cells from oxidative damage by scavenging ROS. In addition to crucial roles in defense system and as enzyme cofactors, antioxidants influence higher plant growth and development by modifying processes from mitosis and cell elongation to senescence and death. Most importantly, they provide essential information on cellular redox state, and regulate gene expression associated with biotic and abiotic stress responses to optimize defense and survival. An overview of the literature is presented in terms of main antioxidants and redox signaling in plant cells. Special attention is given to ROS and ROS-antioxidant interaction as a metabolic interface for different types of signals derived from metabolism and from the changing environment, which regulates the appropriate induction of acclimation processes or, execution of cell death programs, which are the two essential directions for higher plants.  相似文献   

8.
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.  相似文献   

9.
Antioxidants in plant cells mainly include glutathione, ascorbate, tocopherol, proline, betaine and others, which are also information-rich redox buffers and important redox signaling components that interact with cellular compartments. As an unfortunate consequence of aerobic life for higher plants, reactive oxygen species (ROS) are formed by partial reduction of molecular oxygen. The above enzymatic and non-enzymatic antioxidants in higher plant cells can protect their cells from oxidative damage by scavenging ROS. In addition to crucial roles in defense system and as enzyme cofactors, antioxidants influence higher plant growth and development by modifying processes from miotosis and cell elongation to senescence and death. Most importantly, they provide essential information on cellular redox state, and regulate gene expression associated with biotic and abiotic stress responses to optimize defense and survival. An overview of the literature is presented in terms of primary antioxidant free radical scavenging and redox signaling in plant cells. Special attention is given to ROS and ROS-anioxidant interaction as a metabolic interface for different types of signals derived from metabolisms and from the changing environment. This interaction regulates the appropriate induction of acclimation processes or execution of cell death programs, which are the two essential directions for higher plant cells.  相似文献   

10.
Antioxidative responses were investigated in leaves of wheat (Triticum aestivum L.) grown at varying S levels ranging from deficiency to excess (1, 2, 4, 6 and 8 mM S). Optimum yield was observed in plants supplied with 4 mM S. Wheat responded to S deficiency and excess supply by decreasing growth of root and shoot. Chlorosis in young leaves was observed after 15 days of deficient S supply. The biomass and concentration of photoassimilatory pigments decreased in plants grown at 1, 2, 6 and 8 mM S supply. The concentration of thiobarbituric acid reactive substances (TBARS), cysteine, nonprotein thiol and hydrogen peroxide (H2O2) increased in plants grown under S stress. Accumulation of TBARS and H2O2 in leaves indicated oxidative damage in S-deficient and S-excess plants. Deficient and excess levels of S showed an increase in the activities of antioxidative enzymes superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号