首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Caffeine attenuated invasion of human leukemia U937 cells with characteristic of decreased protein expression and mRNA levels of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9. Down‐regulation of MMP‐2 and MMP‐9 in U937 cells was abrogated by abolishment of caffeine‐elicited increase in intracellular Ca2+ concentration and ROS generation. Pretreatment with BAPTA‐AM (Ca2+ chelator) and N‐acetylcysteine (ROS scavenger) abolished caffeine‐induced ERK inactivation and p38 MPAK activation. Moreover, caffeine treatment led to MAPK phosphatase‐1 (MKP‐1) down‐regulation and protein phosphatase 2A catalytic subunit (PP2Ac) up‐regulation, which were involved in cross‐talk between p38 MAPK and ERK. Transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) restored MMP‐2 and MMP‐9 protein expression in caffeine‐treated cells. Caffeine treatment repressed ERK‐mediated c‐Fos phosphorylation but evoked p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun by siRNA reflected that c‐Fos counteracted the effect of c‐Jun on MMP‐2/MMP‐9 down‐regulation. Taken together, our data indicate that MMP‐2/MMP‐9 down‐regulation in caffeine‐treated U937 cells is elicited by Ca2+/ROS‐mediated suppression of ERK/c‐Fos pathway and activation of p38 MAPK/c‐Jun pathway. J. Cell. Physiol. 224: 775–785, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
5.
Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIPL, a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIPL expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIPL protein and fully reversed FLIPL-mediated TRAIL resistance. Moreover, interference with endogenous FLIPL and FLIPS significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.  相似文献   

6.
Arachidonic acid (AA)‐induced apoptotic death of K562 cells (human chronic myeloid leukemic cells) was characteristic of reactive oxygen species (ROS) generation and mitochondrial depolarization. N‐Acetylcysteine pretreatment rescued viability of AA‐treated cells and abolished mitochondrial depolarization. In contrast to no significant changes in phospho‐JNK and phospho‐ERK levels, AA evoked notable activation of p38 MAPK. Unlike that of JNK and p38 MAPK, ERK suppression further reduced the viability of AA‐treated cells. Increases in Fas/FasL protein expression, caspase‐8 activation, the production of tBid and the loss of mitochondrial membrane potential were noted with K562 cells that were treated with a combination of U0126 and AA. Down‐regulation of FADD attenuated U0126‐evoked degradation of procaspase‐8 and Bid. Abolition of p38 MAPK activation abrogated U0126‐elicited Fas/FasL up‐regulation in AA‐treated cells. U0126 pretreatment suppressed c‐Fos phosphorylation but increased p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun protein expression by siRNA suggested that c‐Fos counteracted the effect of c‐Jun on Fas/FasL up‐regulation. Taken together, our data indicate that AA induces the ROS/mitochondria‐dependent death pathway and blocks the ERK pathway which enhances the cytotoxicity of AA through additionally evoking an autocrine Fas‐mediated apoptotic mechanism in K562 cells. J. Cell. Physiol. 222: 625–634, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Pancreatic β‐cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus (DM). In this study, we evaluated the effect of lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β‐cell apoptosis and dysfunction caused by streptozotocin (STZ) and the possible mechanisms implicated. The rat insulinoma cell line INS‐1 were pre‐treated with the indicated concentration of LNT for 30 min. and then incubated for 24 hrs with or without 0.5 mM STZ. We found that STZ treatment causes apoptosis of INS‐1 cells by enhancement of intracellular reactive oxygen species (ROS) accumulation, inducible nitric oxide synthase (iNOS) expression and nitric oxide release and activation of the c‐jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK) signalling pathways. However, LNT significantly increased cell viability and effectively attenuated STZ‐induced ROS production, iNOS expression and nitric oxide release and the activation of JNK and p38 MAPK in a dose‐dependent manner in vitro. Moreover, LNT dose‐dependently prevented STZ‐induced inhibition of insulin synthesis by blocking the activation of nuclear factor kappa beta and increasing the level of Pdx‐1 in INS‐1 cells. Together these findings suggest that LNT could protect against pancreatic β‐cell apoptosis and dysfunction caused by STZ and therefore may be a potential pharmacological agent for preventing pancreatic β‐cell damage caused by oxidative stress associated with diabetes.  相似文献   

8.
Strong evidences support the inhibitory activity of cellular FLICE-inhibitory protein (FLIP) in the apoptotic signalling by death receptors in tumor cells. However, little is known about the role of FLIP in the regulation of apoptosis in non-transformed cells. In this report, we demonstrate that FLIPL plays an important role as a survival protein in non-transformed breast epithelial cells. Silencing of FLIPL by siRNA methodology enhances TRAIL-R2 expression and activates a caspase-dependent cell death process in breast epithelial cells. This cell death requires the expression of TRAIL, TRAIL-R2, FADD and procaspase-8 proteins. A mitochondria-operated apoptotic pathway is partially required for FLIPL siRNA-induced apoptosis. Interestingly, FLIPL silencing markedly abrogates formation of acinus-like structures in a three-dimensional basement membrane culture model (3D) of the human mammary MCF-10A cell line through a caspase-8 dependent process. Furthermore, over-expression of FLIPL in MCF-10A cells delayed lumen formation in 3D cultures. Our results highlight the central role of FLIP in maintaining breast epithelial cell viability and suggest that the mechanisms regulating FLIP levels should be finely controlled to prevent unwanted cell demise.  相似文献   

9.
Death-receptor induced apoptosis is regulated by FLIP [FLICE (Fas-associated protein with death domain-like IL-1β-converting enzyme)-inhibitory protein] via modification of caspase-8 activation. As an important modulator of apoptosis, the long isoform, FLIPL, regulates life and death in many various types of normal and tumor cells and tissues to render resistance to death receptor-mediated apoptosis. In addition, FLIPL has been shown to be involved in regulation of intrinsic (mitochondrial) pathways of apoptosis as well as regulating other proteins involved in cytoprotection and cell cycle progression. Therefore, understanding the role of FLIPL in complex regulatory networks of cell survival/death mechanisms is vital for future developments to control diseases such as cancer. Here, we shown that silencing FLIPL in HEK 293 cells changed the expression levels of proteins that are involved in both extrinsic and intrinsic apoptosis, as well as regulating tumor necrosis factor-α (TNF)-mediated apoptotic patterns. We also show that FLIPL-silenced cells have a lower rate of proliferation and cell cycle progression when compared to control cells. Moreover, treatment with TNF restored proliferation rates in FLIPL-silenced cells back to more normal levels when compared to control cells. These results suggest that cells have evolved complex compensatory mechanisms to overcome the absence of a key apoptotic regulatory proteins.  相似文献   

10.
Protection of cardiac microvascular endothelial cells (CMECs) against hypoxia injury is an important therapeutic strategy for treating ischaemic cardiovascular disease. In this study, we investigated the effects of qiliqiangxin (QL) on primary rat CMECs exposed to hypoxia and the underlying mechanisms. Rat CMECs were successfully isolated and passaged to the second generation. CMECs that were pre‐treated with QL (0.5 mg/mL) and/or HIF‐1α siRNA were cultured in a three‐gas hypoxic incubator chamber (5% CO2, 1% O2, 94% N2) for 12 hours. Firstly, we demonstrated that compared with hypoxia group, QL effectively promoted the proliferation while attenuated the apoptosis, improved mitochondrial function and reduced ROS generation in hypoxic CMECs in a HIF‐1α‐dependent manner. Meanwhile, QL also promoted angiogenesis of CMECs via HIF‐1α/VEGF signalling pathway. Moreover, QL improved glucose utilization and metabolism and increased ATP production by up‐regulating HIF‐1α and a series of glycolysis‐relevant enzymes, including glucose transport 1 (GLUT1), hexokinase 2 (HK2), 6‐phosphofructokinase 1 (PFK1), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Our findings indicate that QL can protect CMECs against hypoxia injury via promoting glycolysis in a HIF‐1α‐dependent manner. Lastly, the results suggested that QL‐dependent enhancement of HIF‐1α protein expression in hypoxic CMECs was associated with the regulation of AMPK/mTOR/HIF‐1α pathway, and we speculated that QL also improved HIF‐1α stabilization through down‐regulating prolyl hydroxylases 3 (PHD3) expression.  相似文献   

11.
The contribution of vincristine (VCR)‐induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL‐60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up‐regulation of TNF‐α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down‐regulated SIRT3, and such down‐regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1‐modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3‐ROS‐p38 MAPK‐PP2A axis inhibited tristetraprolin (TTP)‐controlled TNF‐α mRNA degradation, consequently, up‐regulating TNF‐α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS‐p38 MAPK axis increased the survival of VCR‐treated cells and repressed TNF‐α up‐regulation. In contrast to suppression of the ROS‐p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL‐60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3‐ROS‐p38 MAPK‐PP2A‐TTP axis modulates TNF‐α expression, which triggers apoptosis of VCR‐treated U937 and HL‐60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR‐elicited microtubule destabilization.  相似文献   

12.
Recent findings have reported that up‐regulation of tumor necrosis factor‐alpha (TNF‐α) induced by myocardial hypoxia aggravates cardiomyocyte injury. Acetylcholine (ACh), the principle vagal neurotransmitter, protects cardiomyocytes against hypoxia by inhibiting apoptosis. However, it is still unclear whether ACh regulates TNF‐α production in cardiomyocytes after hypoxia. The concentration of extracellular TNF‐α was increased in a time‐dependent manner during hypoxia. Furthermore, ACh treatment also inhibited hypoxia‐induced TNF‐α mRNA and protein expression, caspase‐3 activation, cell death and the production of reactive oxygen species (ROS) in cardiomyocytes. ACh treatment prevented the hypoxia‐induced increase in p38 mitogen‐activated protein kinase (MAPK) and c‐Jun N‐terminal kinase (JNK) phosphorylation, and increased extracellular signal‐regulated kinase (ERK) phosphorylation. Co‐treatment with atropine, a non‐selective muscarinic acetylcholine receptor antagonist, or methoctramine, a selective type‐2 muscarinic acetylcholine (M2) receptor antagonist, abrogated the effects of ACh treatment in hypoxic cardiomyocytes. Co‐treatment with hexamethonium, a non‐selective nicotinic receptor antagonist, and methyllycaconitine, a selective alpha7‐nicotinic acetylcholine receptor antagonist, had no effect on ACh‐treated hypoxic cardiomyocytes. In conclusion, these results demonstrate that ACh activates the M2 receptor, leading to regulation of MAPKs phosphorylation and, subsequently, down‐regulation of TNF‐α production. We have identified a novel pathway by which ACh mediates cardioprotection against hypoxic injury in cardiomyocytes. J. Cell. Physiol. 226: 1052–1059, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
Diallyl disulfide (DADS) is the most prevalent oil‐soluble sulfur compound in garlic and inhibits cell proliferation in many cancer cell lines. Here we examined DADS cytotoxicity in a redox‐mediated process, involving reactive oxygen species (ROS) production. In the present study, p53‐independent cell cycle arrest at G2/M phase was observed with DADS treatment, along with time‐dependent increase of cyclin B1. In addition, apoptosis was also observed upon 24‐h DADS treatment accompanied by activation of p53. In HCT‐116 cells, DADS application induced a dose‐dependent increase and time‐dependent changes in ROS production. Scavenging of DADS‐induced ROS by N‐acetyl cysteine or reduced glutathione inhibited cell cycle arrest, apoptosis and p53 activation by DADS. These results suggest that ROS trigger the DADS‐induced cell cycle arrest and apoptosis and that ROS are involved in stress‐induced signaling upstream of p53 activation. Transfection of p53 small interfering RNA prevents the accumulation of cleaved poly(ADP‐ribose) polymerase and sub‐G1 cell population by 65% and 35%, respectively. Moreover, DADS‐induced apoptosis was also prevented by treatment with oligomycin, which is known to prevent p53‐dependent apoptosis by reducing ROS levels in mitochondria. These results suggest that mitochondrial ROS may serve as second messengers in DADS‐induced apoptosis, which requires activation of p53. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:71–79, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20266  相似文献   

15.
16.
17.
Autophagic dysfunction is observed in diabetes mellitus. Resveratrol has a beneficial effect on diabetic cardiomyopathy. Whether the resveratrol‐induced improvement in cardiac function in diabetes is via regulating autophagy remains unclear. We investigated the mechanisms underlying resveratrol‐mediated protection against heart failure in diabetic mice, with a focus on the role of sirtuin 1 (SIRT1) in regulating autophagic flux. Diabetic cardiomyopathy in mice was induced by streptozotocin (STZ). Long‐term resveratrol treatment improved cardiac function, ameliorated oxidative injury and reduced apoptosis in the diabetic mouse heart. Western blot analysis revealed that resveratrol decreased p62 protein expression and promoted SIRT1 activity and Rab7 expression. Inhibiting autophagic flux with bafilomycin A1 increased diabetic mouse mortality and attenuated resveratrol‐induced down‐regulation of p62, but not SIRT1 activity or Rab7 expression in diabetic mouse hearts. In cultured H9C2 cells, redundant or overactive H2O2 increased p62 and cleaved caspase 3 expression as well as acetylated forkhead box protein O1 (FOXO1) and inhibited SIRT1 expression. Sirtinol, SIRT1 and Rab7 siRNA impaired the resveratrol amelioration of dysfunctional autophagic flux and reduced apoptosis under oxidative conditions. Furthermore, resveratrol enhanced FOXO1 DNA binding at the Rab7 promoter region through a SIRT1‐dependent pathway. These results highlight the role of the SIRT1/FOXO1/Rab7 axis in the effect of resveratrol on autophagic flux in vivo and in vitro, which suggests a therapeutic strategy for diabetic cardiomyopathy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号