首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
全人源抗结肠癌噬菌体单链抗体库的构建及筛选鉴定   总被引:1,自引:0,他引:1  
采用体外致敏法和EBV转化技术联合噬菌体展示技术构建噬菌体呈现型单链抗体库.从中筛选获得阳性克隆,并进行ELISA、免疫组化及测序鉴定.结果得到了库容为4.0×109的初级噬菌体抗体库,全长ScFv(Single-chain Fv)基因的插入率为90%.筛选获得两个克隆对HT-29呈强阳性反应,而与HFF等人正常细胞系呈弱阳性或阴性反应.免疫组织化学鉴定表明克隆F12与结肠癌组织和结肠癌旁组织阳性率的差别有统计学意义.由上述结果可见构建库容量达4.0×109的全人源抗结肠癌噬菌体单链抗体库是完全可行的,经筛选及鉴定获得了特异性较强的噬菌体克隆,为结肠癌的临床导向诊断和治疗奠定了基础.  相似文献   

2.
目的:从大容量噬菌体抗体库中筛选人源性抗呼吸道合胞病毒F蛋白的单链抗体。方法:以RSV F蛋白为靶抗原,通过“吸附-洗涤-洗脱-扩增”过程从天然人源性噬菌体抗体库中筛选特异性抗F蛋白单链抗体。5轮筛选后,单克隆经ELISA检测,阳性克隆进行核酸序列分析,并将阳性克隆噬菌体感染E.coli HB2151,经IPTG诱导,制备抗RSV F蛋白的可溶性单链抗体,并进行Western及Dot blot分析。结果:经过筛选,获得了18株能与F蛋白特异性结合的阳性克隆,取OD值最高的克隆E4经测序并检索Kabat数据库分析,显示其基因与人免疫球蛋白可变区基因具有高度同源性,Western及Dot blot分析表明为单链抗体。结论:利用天然人源性噬菌体抗体库技术制备出高特异性的人源性抗RSV F蛋白单链抗体。  相似文献   

3.
目的:构建鼠源E型肉毒毒素(BoNT/E)免疫噬菌体单链抗体库,筛选BoNT/E特异性抗体。方法:从E型肉毒类毒素免疫小鼠的脾细胞中提取总RNA,反转录成cDNA,分别扩增出小鼠重链可变区基因和轻链可变区基因;通过重叠延伸PCR将重链可变区基因和轻链可变区基因组装成scFv基因,重组于噬粒pS100中,电转化大肠杆菌TG_1,合并所有克隆成初级库;随机挑取克隆进行核苷酸序列测定,对初级库序列多样性进行分析;在辅助噬菌体M_(13)K_(07)的拯救下,构建成scFv噬菌体抗体库;用纯化的BoNT/E对鼠源BoNT/E免疫噬菌体单链抗体库进行3轮富集筛选,制备单克隆的噬菌体抗体颗粒进行酶联免疫吸附试验,阳性克隆进行核苷酸序列测定。结果:鼠源BoNT/E免疫噬菌体单链抗体库的库容为7.09×10~7,随机挑取的20个克隆序列各不相同,序列正确率为85%,基本覆盖了IgHV、IgKV、IgLV的优势家族;纯化的BoNT/E作为抗原通过3轮筛选,噬菌体抗体富集了66倍,第3轮筛选后随机挑取90个克隆制备噬菌体抗体颗粒,酶联免疫吸附试验分析有88个呈现阳性反应,序列比对得到了24个不同序列的BoNT/E特异性抗体。结论:构建了库容量达7.09×10~7的鼠源BoNT/E免疫噬菌体单链抗体库,筛选得到了24个不同序列的BoNT/E特异性抗体。  相似文献   

4.
目的:从胎盘中提取转铁蛋白受体并获得抗转铁蛋白受体的抗体。方法:人新鲜胎盘组织被破碎后,用去污剂TritonX-100裂解细胞膜,释放膜蛋白。利用膜蛋白中的转铁蛋白受体能与铁-转铁蛋白复合物特异性结合的特性对其进行亲和纯化。对纯化得到的目的蛋白,经脱盐后进行ELISA及肽质量图谱分析,证明为所需的转铁蛋白受体后,以其包被免疫管,从全合成人源噬菌体抗体库中筛选抗体。结果:从人源噬菌体抗体库中筛选到5个能够与转铁蛋白受体特异性结合的噬菌体单链抗体。结论:以人源转铁蛋白受体为抗体,可从全人源噬菌体抗体库中筛选到其特异性的抗体。  相似文献   

5.
噬菌体抗体库技术制备高亲和力人抗体   总被引:1,自引:0,他引:1  
噬菌体抗体库技术的基本原理是将全套抗体可变区基因组装到丝状噬菌体表达载体内 ,与噬菌体外壳蛋白Ⅲ或Ⅷ基因融合并表达到噬菌体表面 ,以固相化的抗原作配基 ,通过吸附 洗脱 扩增的富集过程 ,筛选到与抗原特异结合的抗体克隆 ,并得到相应的抗体可变区基因。因此噬菌体抗体库技术可以被认为是体内抗体生成过程的模拟 ,首先建立足够多样性的抗体库 ,然后通过免疫亲和筛选即可能得到针对任何抗原的人抗体。该技术省时省力 ,无...  相似文献   

6.
利用噬菌体展示技术筛选特异性人源抗ICAM-1单链抗体(Anti-human ICAM-1 scFv)并进行生物学活性鉴定。应用Tomlinson I+J噬菌体抗体库,以P1抗原肽为包被抗原,经过4轮“吸附-洗脱-扩增”进行亲和富集筛选。以PCR反应、ELISA抗原交叉反应和Dot blotting实验进行阳性克隆的鉴定。scFv经原核表达和分离纯化后,以Western blotting实验、竞争ELISA实验和细胞黏附抑制实验对其生物学活性进行初步鉴定。Tomlinson I+J噬菌体抗体库经4轮亲和富集筛选,利用ELISA方法成功筛出4株阳性克隆。通过PCR鉴定反应、ELISA抗原交叉反应和Dot blotting实验,最终获得了1株既能与P1抗原肽特异结合又能与人ICAM-1抗原特异结合的阳性克隆J-A1。对scFv进行原核表达和亲和层析后获得了高纯度的目的蛋白。竞争ELISA实验和细胞黏附抑制实验证实纯化的scFv具有良好的亲和活性和抗细胞黏附活性。文中成功利用噬菌体展示技术筛选到特异性人源抗ICAM-1 scFv,为进一步探索该抗体在炎症相关性疾病治疗中的应用奠定了基础。  相似文献   

7.
目的:构建噬菌体天然纳米抗体展示库,以期用于筛选不同抗原分子的纳米抗体筛选平台,并用艰难梭菌谷氨酸脱氢酶(GDH)抗原筛选靶向GDH的纳米抗体,对所构建的噬菌体天然纳米抗体展示库进行验证。方法:采用Oligo DT提取双峰骆驼脾脏总RNA进行反转录,通过巢氏PCR获取全套重链可变区基因,将其构建到噬菌粒pCANTAB5E载体,经多次电转化至E. coil TG1构建初级噬菌体抗体库,经辅助噬菌体拯救后构成噬菌体展示库,并对噬菌体展示库的库容及多样性进行分析和鉴定。同时以GDH为靶向抗原对文库进行淘筛,计算淘筛回收率,并对第三轮淘筛后平板的单克隆进行ELISA鉴定。结果:构建的天然噬菌体纳米抗体库的插入率为95%左右,随机挑取的9个克隆氨基酸同源性为66. 17%,经MEGA分析后具有较好的多样性,同时经辅助噬菌体拯救后,得到的噬菌体展示库滴度为4×10~(12)CFU/ml。在三轮淘筛过程中,回收率逐步升高,噬菌体得到了有效的富集,同时对阳性克隆进行测序及分析,最终得到2条抗GDH纳米抗体序列。结论:成功构建了双峰驼源天然噬菌体纳米抗体展示文库且多样性良好,为后续筛选其他的靶向抗原奠定了基础,同时筛选获得两条抗GDH纳米抗体序列,为制备艰难梭菌谷氨酸脱氢酶诊断抗体提供技术支撑。  相似文献   

8.
抗黄曲霉毒素B1单链抗体的筛选和鉴定   总被引:1,自引:0,他引:1  
目的】从Tomlinson(I)噬菌体抗体库中筛选人源化抗黄曲霉毒素B1单链抗体蛋白(scFv)并进行鉴定。【方法】分别采用甘氨酸洗脱、胰蛋白酶洗脱、游离AFB1竞争洗脱和AFB1竞争洗脱加胰蛋白酶处理4种方法对噬菌体抗体进行特异性洗脱。将筛选到的噬菌体阳性克隆转化到大肠杆菌 (Escherichia.coli ) HB2151,IPTG诱导表达scFv。ELISA检测和基因序列测定。【结果】比较四种洗脱方法,发现用AFB1竞争加胰蛋白酶洗脱筛选到阳性克隆的的概率最高,把此方法得到的阳性噬菌体克隆转化大肠杆菌HB2151表达,竞争性ELISA检测得到2个能特异性结合游离的AFB1阳性克隆。间接性ELISA测定相对亲和力分别为0.4 μg/mL和0.7 μg/mL 。测序证实scFv属于人类免疫球蛋白可变区。【结论】利用噬菌体展示技术获得高特异性抗黄曲霉毒素B1的人源化单链抗体,本实验方法可以为其它抗半抗原重组抗体的筛选提供一定的借鉴意义。  相似文献   

9.
轮换淘选法筛选凝血酶特异的噬菌体抗体   总被引:3,自引:0,他引:3       下载免费PDF全文
以抗原为选择剂,通过淘选可以从噬菌体抗体库中获得特异的单链抗体克隆。采用液相一固相轮换淘选的方法,从鼠源噬菌体抗体库中淘选出与凝血酶特异结合的单链抗体。首先,用光敏生物素将凝血酶生物素化,然后用链亲和素磁珠法淘选与凝血酶特异结合的重组噬菌体。噬菌体扩增后使用酶标板进行第2轮淘选,以除去上一轮中非特异结合的重组噬菌体。经4轮轮换淘选,最后从23个单克隆噬菌体抗体中分离出4个凝血酶特异的噬菌体抗体。  相似文献   

10.
噬菌体抗体库的构建及抗乳腺癌细胞单链抗体的筛选   总被引:3,自引:0,他引:3  
构建抗人乳腺癌细胞MCF 7的噬菌体单链抗体库 ,从中筛选MCF 7细胞特异性单链抗体。用MCF-7细胞免疫BALB C小鼠 ,取脾脏 ,提取总RNA ,用RT-PCR技术扩增小鼠抗体重链 (VH)和轻链 (VL)可变区基因 ,经重叠PCR(SOE-PCR) ,在体外将VH和VL连接成单链抗体 (scFv)基因 ,并克隆到噬菌粒载体pCANTAB5E中 ,电转化至大肠杆菌TG1,经辅助噬菌体超感染 ,构建噬菌体单链抗体库。从该抗体库中筛选特异性识别MCF-7细胞的噬菌体单链抗体 ,将表面展示单链抗体的单克隆噬菌体转化大肠杆菌TOP10进行可溶性表达。成功地构建了库容为12×106 的抗MCF-7乳腺癌细胞的单链抗体库 ,初步筛选到了与MCF 7细胞特异性结合的scFv,Westernblot检测表明 ,在大肠杆菌TOP10中实现了单链抗体可溶性表达  相似文献   

11.
Here we describe a new method applying phage-displayed antibody libraries to the selection of antibodies against a single identified cell on a glass slide. This is the only described method that has successfully achieved selection of antibodies against a single rare cell in a heterogeneous population of cells. The phage library is incubated with the slide containing the identified rare cell of interest; incubation is followed by UV irradiation while protecting the target cell with a minute disc. The UV light inactivates all phages outside the shielded area by cross-linking the DNA constituting their genomes. The expected yield is between one and ten phage particles from a single cell selection. The encoded antibodies are subsequently produced monoclonally and tested for specificity. This method can be applied within a week to carry out ten or more individual cell selections. Including subsequent testing of antibody specificity, a specific antibody can be identified within 2 months.  相似文献   

12.
A number of approaches have been utilized to generate antibodies to cancer cell surface receptors that can be used as potential therapeutics. A number of these therapeutic approaches, including antibody-drug conjugates, immunotoxins, and targeted nucleic acid delivery, require antibodies that not only bind receptor but also undergo internalization into the cell upon binding. We previously reported on the ability to generate cancer cell binding and internalizing antibodies directly from human phage antibody libraries selected for internalization into cancer cell lines. While a number of useful antibodies have been generated using this approach, limitations include the inability to direct the selections to specific antigens and to identify the antigen bound by the antibodies. Here we show that these limitations can be overcome by using yeast-displayed antigens known to be associated with a cell type to select the phage antibody output after several rounds of selection on a mammalian cell line. We used this approach to generate several human phage antibodies to yeast-displayed EphA2 and CD44. The antibodies bound both yeast-displayed and mammalian cell surface antigens, and were endocytosed upon binding to mammalian cells. This approach is generalizable to many mammalian cell surface proteins, results in the generation of functional internalizing antibodies, and does not require antigen expression and purification for antibody generation.  相似文献   

13.
Phage display screenings are frequently employed to identify high-affinity peptides or antibodies. Although successful, phage display is a laborious technology and is notorious for identification of false positive hits. To accelerate and improve the selection process, we have employed Illumina next generation sequencing to deeply characterize the Ph.D.-7 M13 peptide phage display library before and after several rounds of biopanning on KS483 osteoblast cells. Sequencing of the naive library after one round of amplification in bacteria identifies propagation advantage as an important source of false positive hits. Most important, our data show that deep sequencing of the phage pool after a first round of biopanning is already sufficient to identify positive phages. Whereas traditional sequencing of a limited number of clones after one or two rounds of selection is uninformative, the required additional rounds of biopanning are associated with the risk of losing promising clones propagating slower than nonbinding phages. Confocal and live cell imaging confirms that our screen successfully selected a peptide with very high binding and uptake in osteoblasts. We conclude that next generation sequencing can significantly empower phage display screenings by accelerating the finding of specific binders and restraining the number of false positive hits.  相似文献   

14.
Many targeted cancer therapies require endocytosis of the targeting molecule and delivery of the therapeutic agent to the interior of the tumor cell. To generate single chain Fv (scFv) antibodies capable of triggering receptor-mediated endocytosis, we previously developed a method to directly select phage antibodies for internalization by recovering infectious phage from the cytoplasm of the target cell. Using this methodology, we reported the selection of a panel of scFv that were internalized into breast cancer cells from a nonimmune phage library. For this work, an immunotherapeutic was generated from one of these scFv (F5), which bound to ErbB2 (HER2/neu). The F5 scFv was reengineered with a C-terminal cysteine, expressed at high levels in Escherichia coli, and coupled to sterically stabilized liposomes. F5 anti-ErbB2 immunoliposomes were immunoreactive as determined by surface plasmon resonance (SPR) and were avidly internalized by ErbB2-expressing tumor cell lines in proportion to the levels of ErbB2 expression. F5-scFv targeted liposomes containing doxorubicin had antitumor activity and produced significant reduction in tumor size in xenografted mice compared to nontargeted liposomes containing doxorubicin. This strategy should be applicable to generate immunotherapeutics for other malignancies by selecting phage antibodies for internalization into other tumor types and using the scFv to target liposomes or other nanoparticles.  相似文献   

15.
The display of human antibody repertoire on the cell surface of the filamentous bacteriophage has offered a novel strategy for selecting antibodies to a diverse range of purified targets. However, the selection of antibodies with biological functions has not yet been fully investigated. To select phage antibodies with therapeutic potential, a synthetic human single chain Fv (scFv) phage antibody library was panned on whole premyelocytic leukemia cell line (HL60). Phages binding to common receptors and undesirable phages were subtracted by incubating the library with human glioma cells. High affinity binding phages to HL60 cells were enriched by fluorescence-activated cell sorting. After the 6th round of selection, 50% of the selected phage antibodies showed significant binding to HL60 cells, whereas none of the analyzed phage antibodies bound to human pre-B cells (Nalm-6). In addition to binding, one scFv antibody inhibited HL60 cell proliferation by 90% compared to irrelevant scFv antibodies. Taken together the data demonstrate that specific scFv antibodies with biological functions can be isolated by using whole cells as affinity matrix.  相似文献   

16.
The combinatorial phage display library approach to antibody repertoire cloning offers a powerful tool for the isolation of specific antibodies to defined target antigens. Panning strategy is often a very critical point for selecting antibody displayed on the surface of bacteriophages. Most selection strategies described to date have relied on the availability of purified and often recombinant antigen, providing the possibility to perform selections on a well defined antigen source. However, when the antigen is difficult to purify by means of laborious and time-consuming chromatography procedures, panning of phage antibody libraries has to be performed on complex antigen sources such as cell surfaces or tissue sections, or even by in vivo selection methods. This provides a series of technical and experimental complications. In the present work, we successfully generated a mouse monoclonal antibody fragment from a phage display library directed against protein E7 of HPV18 avoiding antigen purification as for immunizing mice as for antibody library selection. Our work demonstrates the feasibility of phage antibody selections on antigens transferred to a nitrocellulose membrane as solid support, using one-dimensional polyacrylamide gel electrophoresis system as the only practice to separate a given antigen present in bacterial crude cell lysate.  相似文献   

17.
Phage display is a widely used technology for the isolation of peptides and proteins with specific binding properties from large libraries of these molecules. A drawback of the common phagemid/helper phage systems is the high infective background of phages that do not display the protein of interest, but are propagated due to non-specific binding to selection targets. This and the enhanced growth rates of bacteria harboring aberrant phagemids not expressing recombinant proteins leads to a serious decrease in selection efficiency. Here we describe a VCSM13-derived helper phage that circumvents this problem, because it lacks the genetic information for the infectivity domains of phage coat protein pIII. Rescue of a library with this novel CT helper phage yields phages that are only infectious when they contain a phagemid-encoded pIII-fusion protein, since phages without a displayed protein carry truncated pIII only and are lost upon re-infection. Importantly, the CT helper phage can be produced in quantities similar to the VCSM13 helper phage. The superiority of CT over VCSM13 during selection was demonstrated by a higher percentage of positive clones isolated from an antibody library after two selection rounds on a complex cellular target. We conclude that the CT helper phage considerably improves the efficiency of selections using phagemid-based protein libraries.  相似文献   

18.
Tur MK  Huhn M  Sasse S  Engert A  Barth S 《BioTechniques》2001,30(2):404-8, 410, 412-3
Display of functional antibody fragments on the surface of filamentous bacteriophages allows fast selection of specific phage antibodies against a variety of target antigens. However, enrichment of single chain variable fragment (scFv)-displaying phages is often hampered by the abundance of bacteriophages lacking antibody fragments. Moderate adhesive binding activities and production advantages of these "empty" phages results in their subsequent enrichment during selection on target cells. To date, very limited effort has been made to develop strategies removing nonspecific binding phages during the selection processes. To efficiently reduce insert-free phages when panning on intact cells, we increased the washing stringency by lowering the pH of the buffer with citric acid. Under standard washing procedures (pH 7.4), only approximately 73% of recovered phages were insert-free after three rounds of selection. Using stringent washing procedures (pH 5.0), approximately 12% of recovered phages contained no scFv. Using this protocol, we have cloned an antibody fragment from a mouse/human hybridoma cell line directed against the disialoganglioside GD2. This study confirms that selection of phage antibodies on cells is efficiently enhanced by assays augmenting the stringency to remove nonspecific binding phages.  相似文献   

19.
Zhang L  Yin G  Yan D  Wei Y  Ma C  Huang Z  Liao X  Yao Y  Chen X  Hao B 《Biotechnology letters》2011,33(9):1729-1735
To develop more biomarkers for diagnosis and therapy of ovarian cancer, a 12-mer phage display library was used to isolate peptides that bound specifically to the human ovarian tumor cell line SK-OV-3. After five rounds of in vitro screening, the recovery rate of phages showed a 69-fold increase over the first round of washings and a group of phage clones capable of binding to SK-OV-3 cells were obtained. A phage clone named Z1 with high affinity and specificity to SK-OV-3 cells was identified in vitro. More importantly, the synthetic biotin-labeled peptide, ZP1 (=SVSVGMKPSPRP), which corresponded to the sequence of the inserted fragment of Z1, demonstrated a high specificity to SK-OV-3 cells especially when compared to other cell lines (A2780 and 3T3). ZP1 might therefore be a biomarker for targeting drug delivery in ovarian cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号