首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemosensory input is essential for mating in male hamsters and the vomeronasal organ is critical to mating in naive males. In studies to investigate the convergence of vomeronasal chemosensory input and the neurohormone gonadotrophin releasing hormone (GnRH), we have unexpectedly found that pre-exposure to pheromone-containing chemosignals from female hamsters will also eliminate mating deficits normally seen in naive male hamsters with vomeronasal organs removed (VNX). In the present studies, naive-intact and naive-VNX male hamsters were given intracerebroventricular injections of GnRH or saline and exposed to female pheromones found in hamster vaginal fluid (HVF) or to water 40 min prior to a 5 min mating test. VNX males given saline injections and exposed to water had severe mating deficits, but VNX males given saline injections and exposed to HVF mated normally. As shown previously, males given GnRH injections and exposed to water also mated normally. HVF exposure prior to a mating test apparently acted to compensate for the lack of vomeronasal input in these males.  相似文献   

2.
Recent studies point to an important role for the main olfactory epithelium (MOE) in regulating sexual behavior in male mice. We asked whether sexual experience could compensate for the disruptive effects of lesioning the MOE on sexual behavior in male mice. Male mice, which were either sexually naive or experienced, received an intranasal irrigation of either a zinc sulfate solution to destroy the MOE or saline. Sexual behavior in mating tests with an estrous female was completely abolished in zinc sulfate-treated male mice regardless of whether subjects were sexually experienced or not before the treatment. Furthermore, zinc sulfate treatment clearly disrupted olfactory investigation of both volatile and nonvolatile odors. Destruction of the MOE by zinc sulfate treatment was confirmed by a significant reduction in the expression of Fos protein in the main olfactory bulb following exposure to estrous female urine. By contrast, vomeronasal function did not seem to be affected by zinc sulfate treatment: nasal application of estrous female urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of zinc sulfate- and saline-treated males. Likewise, the expression of soybean agglutinin, which stains the axons of vomeronasal organ neurons projecting to the glomerular layer of the AOB, was similar in zinc sulfate- and saline-treated male mice. These results show that the main olfactory system is essential for the expression of sexual behavior in male mice and that sexual experience does not overcome the disruptive effects of MOE lesioning on this behavior.  相似文献   

3.
In an investigation of the role that central tyrosine hydroxylase-(TH) containing neurons play in copulation in the male Syrian hamster, The induction of Fos protein was used as an index of neuronal activation. With a double immunoperoxidase technique, the activation of TH neurons was compared in hamsters from three experimental groups: (1) mated in a new cage; (2) handled controls placed in a new cage, and (3) unhandled controls. Although mating selectively induces Fos production in the medial amygdaloid nucleus (Me), more than half of the TH neurons in Me (a region outside of the classical catecholamine systems) expressed Fos equally in all of the experimental groups. In the paraventricular hypothalamic nucleus (PVN), TH neurons were activated equivalently in mated and handled control animals compared to unhandled controls. TH neurons in the neucleus of the solitary tract (NST) were also activated in handled control animals, and mating further enhanced the level of Fos immunostaining in these neurons above both groups of nonmated animals. Although not quantified, co-localization of Fos and TH was also observed in all experimental groups in the olfactory bulbs and the interfascicular nucleus, and in the horizontal limb of the diagonal band of Broca and the cerebral cortex, regions which contain TH neurons but are not part of the classically described TH cell groups. Few, if any, TH neurons in other catecholaminergic brain regions, such as the substantia nigra and locus coeruleus, produced Fos in any of the experimental groups. These results suggest that TH neurons in the PVN and NST may be activated during different states of arousal, and that nonclassical TH neurons in the amygdala produce high levels of Fos even in unstimulated animals. 1994 John Wiley & Sons, Inc.  相似文献   

4.
Exposure to chemosensory signals from unfamiliar males can terminate pregnancy in recently mated female mice. The number of tyrosine hydroxylase-positive neurons in the main olfactory bulb has been found to increase following mating and has been implicated in preventing male-induced pregnancy block during the post-implantation period. In contrast, pre-implantation pregnancy block is mediated by the vomeronasal system, and is thought to be prevented by selective inhibition of the mate’s pregnancy blocking chemosignals, at the level of the accessory olfactory bulb. The objectives of this study were firstly to identify the level of the vomeronasal pathway at which selective inhibition of the mate’s pregnancy blocking chemosignals occurs. Secondly, to determine whether a post-mating increase in tyrosine hydroxylase-positive neurons is observed in the vomeronasal system, which could play a role in preventing pre-implantation pregnancy block. Immunohistochemical staining revealed that mating induced an increase in tyrosine-hydroxylase positive neurons in the arcuate hypothalamus of BALB/c females, and suppressed c-Fos expression in these neurons in response to mating male chemosignals. This selective suppression of c-Fos response to mating male chemosignals was not apparent at earlier levels of the pregnancy-blocking neural pathway in the accessory olfactory bulb or corticomedial amygdala. Immunohistochemical staining revealed an increase in the number of tyrosine hydroxylase-positive neurons in the accessory olfactory bulb of BALB/c female mice following mating. However, increased dopamine-mediated inhibition in the accessory olfactory bulb is unlikely to account for the prevention of pregnancy block to the mating male, as tyrosine hydroxylase expression did not increase in females of the C57BL/6 strain, which show normal mate recognition. These findings reveal an association of mating with increased dopaminergic modulation in the pregnancy block pathway and support the hypothesis that mate recognition prevents pregnancy block by suppressing the activation of arcuate dopamine release.  相似文献   

5.
We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexually experienced male was significantly reduced in ZnSO4-treated female mice. Vomeronasal function did not seem to be affected by ZnSO4 treatment: nasal application of male urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of ZnSO4 as well as SAL-treated female mice. Likewise, soybean agglutinin staining, which stains the axons of vomeronasal neurons projecting to the glomerular layer of the AOB was similar in ZnSO4-treated female mice compared to SAL-treated female mice. By contrast, a significant reduction of Fos in the main olfactory bulb was observed in ZnSO4-treated females in comparison to SAL-treated animals, confirming a substantial destruction of the MOE. These results show that the MOE is primarily involved in the detection and processing of odors that are used to localize and identify the sex and endocrine status of conspecifics. By contrast, both the main and accessory olfactory systems contribute to female sexual receptivity in female mice.  相似文献   

6.
The transport of HRP (horseradish peroxidase) from the nasalcavity to the brain by intact olfactory receptor axons was usedto investigate the effectiveness of methods commonly used inbehavioral studies for deafferenting nasal chemoreceptor systems.The HRP experiments demonstrated that routine intranasal lavagewith zinc sulfate solution fails to destroy all olfactory receptorneurons in hamsters, in spite of the distinct behavioral deficitthat this treatment can cause in the male hamster. The intracranialdeafferentation of the accessory olfactory bulb by surgicalsection of the vomeronasal nerves was generally effective butthere was much incidental damage to main olfactory nerves thatwould probably not be detected without the HRP tracer. The distribution pattern of HRP molecules introduced into themammalian nasal cavity, as shown by the uptake of HRP by nasalchemoreceptors and its transport to the brain, was also usedto identify potential pathways for non-volatile stimulus moleculeswithin the nose. HRP reaction product was reliably detectedin the glomeruli of the main olfactory bulb after HRP was depositedat the nostril, demonstrating that nonvolatile materials, oncethey have entered the nasal cavity, can reach the main olfactoryreceptor neurons in the posterior nasal epithelium. Significantamounts of HRP reaction product were never observed in the accessoryolfactory bulbunlessa large dose of epinephrine had been givento activate the vomeronasal organ pumping mechanism, which drawssubstances into the vomeronasal organ lumen. Thus, it seemsthat stimulus access to vomeronasal receptor neurons is controlledindependently of access to main olfactory receptor neurons.  相似文献   

7.
We summarize literature from animal and human studies assessing sex differences in the ability of the main olfactory system to detect and process sex‐specific olfactory signals (“pheromones”) that control the expression of psychosexual functions in males and females. A case is made in non primate mammals for an obligatory role of pheromonal signaling via the main olfactory system (in addition to the vomeronasal‐accessory olfactory system) in mate recognition and sexual arousal, with male‐specific as well as female‐specific pheromones subserving these functions in the opposite sex. Although the case for an obligatory role of pheromones in mate recognition and mating among old world primates, including humans, is weaker, we review the current literature assessing the role of putative human pheromones (eg, AND, EST, “copulin”), detected by the main olfactory system, in promoting mate choice and mating in men and women. Based on animal studies, we hypothesize that sexually dimorphic effects of putative human pheromones are mediated via main olfactory inputs to the medial amygdala which, in turn, transmits olfactory information to sites in the hypothalamus that regulate reproduction.  相似文献   

8.
During mating in hamsters, both tactile and nontactile sensory stimulation experienced by the female affect sexual behavior and progestational neuroendocrine reflexes. To test the interactions of these types of mating stimulation, c-Fos immunohistochemistry measured brain cellular activity during sexual behavior under conditions that included combinations of tactile and nontactile mating stimulation. Test groups received: (1) mating stimulation from a male, females being either fully mated or mated while wearing a vaginal mask, or (2) experimenter applied manual vaginocervical stimulation (VCS)-with or without males present, or (3) handling similar to VCS but without insertions-with or without males present. Numbers of c-Fos immunoreactive cells were counted in specific subdivisions of the posterior medial amygdala (MeP) and ventromedial hypothalamus (VMH). The medial amygdala dorsal and ventral subdivisions responded differentially to components of mating stimulation. The posterodorsal Me (MePD) cellular activation was greatest during mating conditions that included VCS and/or males present. However, the posteroventral Me (MePV) was sensitive to male exposure and not to VCS. Also, MePV and VMH shell responses mirrored each other, both being primarily sensitive to male exposure. In separate tests, manual VCS induced pseudopregnancy, though the procedure was most effective with additional nontactile stimulation from males present. In summary, contextual cues provided by nontactile male stimulation enhance the effect of vaginocervical and other tactile stimulation on reproductive processes. Furthermore, c-Fos expression in the female hamster medial amygdala is region and context dependent.  相似文献   

9.
The accessory olfactory system contributes to the perception of chemical stimuli in the environment. This review summarizes the structure of the accessory olfactory system, the stimuli that activate it, and the responses elicited in the receptor cells and in the brain. The accessory olfactory system consists of a sensory organ, the vomeronasal organ, and its central projection areas: the accessory olfactory bulb, which is connected to the amygdala and hypothalamus, and also to the cortex. In the vomeronasal organ, several receptors—in contrast to the main olfactory receptors—are sensitive to volatile or nonvolatile molecules. In a similar manner to the main olfactory epithelium, the vomeronasal organ is sensitive to common odorants and pheromones. Each accessory olfactory bulb receives input from the ipsilateral vomeronasal organ, but its activity is modulated by centrifugal projections arising from other brain areas. The processing of vomeronasal stimuli in the amygdala involves contributions from the main olfactory system, and results in long-lasting responses that may be related to the activation of the hypothalamic–hypophyseal axis over a prolonged timeframe. Different brain areas receive inputs from both the main and the accessory olfactory systems, possibly merging the stimulation of the two sensory organs to originate a more complex and integrated chemosensory perception.  相似文献   

10.
Sexual behavior in female rats depends on the action of estradiol on estrogen receptors (ERs) found in particular brain regions. While hormonal regulation of female sexual behavior requires ERalpha, the possible functions of ERbeta remain to be clarified. Mating stimulation has several behavioral and physiological consequences and induces Fos expression in many brain areas involved in the regulation of reproductive behavior and physiology. In addition, some cells in which mating induces Fos expression coexpress ERalpha. To determine whether cells in which Fos is induced by a particular mating stimulus coexpress ERalpha, ERbeta, or both, we used a triple-label immunofluorescent technique to visualize ERalpha-, ERbeta-, and mating-induced Fos-immunoreactivity (Fos-ir) in neurons in which mating stimulation reliably increases Fos expression. Ovariectomized, hormone-primed rats were either unmated, received 15 mounts, or received 15 intromissions. In the rostral medial preoptic area, Fos-ir was induced by mounts alone primarily in cells coexpressing ERalpha-ir, while Fos-ir was induced by intromissions mainly in cells coexpressing both ERalpha-ir and ERbeta-ir (ERalpha/ERbeta-ir). In the dorsal part of the posterodorsal medial amygdala, Fos-ir was induced by intromissions in cells coexpressing ERalpha-ir and ERalpha/ERbeta-ir. However, in the ventral part of the posterodorsal medial amygdala, Fos-ir was induced by intromissions primarily in cells coexpressing only ERbeta-ir. These data suggest that qualitatively different sexual stimuli may be integrated through distinct ER-containing circuits in the rostral medial preoptic area and posterodorsal medial amygdala. The diversity in coexpression of type of ER in cells in different brain areas after various mating stimuli suggests a role for both ERalpha and ERbeta in the integration of hormonal information and information related to mating stimuli.  相似文献   

11.
Male urinary pheromones modulate behavioral and neuroendocrine function in mice after being detected by sensory neurons in the vomeronasal organ (VNO) neuroepithelium. We used nuclear Fos protein immunoreactivity (Fos-IR) as a marker of changes in neuronal activity to examine the processing of male pheromones throughout the VNO projection pathway to the hypothalamus. Sexually naive male and female Balb/c mice were gonadectomized and treated daily with estradiol benzoate (EB) or oil vehicle for 3 weeks. Subjects were then exposed to soiled bedding from gonadally intact Balb/c males or to clean bedding for 90 min prior to sacrifice and processing of their VNOs and forebrains for Fos-IR. Male pheromones induced similar numbers of Fos-IR cells in the VNO neuroepithelium of oil-treated male and female subjects; however, EB-treated females had significantly more Fos-IR neurons in the VNO than any other group. There was an equivalent neuronal Fos response to male odors in the mitral and granule cells of the anterior and posterior accessory olfactory bulb of males and females, regardless of hormone treatment. In central portions of the VNO projection pathway (i.e., bed nucleus of the stria terminalis, medial preoptic area) neuronal Fos responses to male pheromones were present in female but absent in male subjects, regardless of hormone treatment. In a separate experiment, mating induced neuronal Fos-IR in these brain regions at levels in gonadally intact male subjects which were equal to or greater than those seen in ovariectomized females primed with estrogen and progesterone. This suggests that neurons in the central portions of the male's VNO pathway are capable of expressing Fos. Our results suggest that sexually dimorphic central responses to pheromones exist in mice that may begin in the VNO neuroepithelium.  相似文献   

12.
Choi GB  Anderson DJ 《Cell》2005,123(4):550-553
The standard view that the control of mating behavior by pheromones is mediated by the vomeronasal organ, and not by the main olfactory epithelium, has recently been called into question. In this issue of Cell, two independent studies (Boehm et al., 2005; Yoon et al., 2005) examine the inputs from each of these olfactory pathways to a population of neurons that plays a central role in mating behavior.  相似文献   

13.
Non-copulating (NC) males are those animals that do not mate in spite of repeated testing with sexually receptive females. They have been observed in several species including rats and mice. The present experiment was designed to perform a detailed behavioral characterization of NC male mice. Thus, we evaluated their sexual incentive motivation for a sexually receptive female or a sexually active male, olfactory preference for volatile and non-volatile odors from females or males, and olfactory discrimination between female and male volatile odors and food related odors (milk versus vinegar). We compared the activity of the accessory olfactory system (AOS) in copulating (C) and NC males in response to estrous bedding using the induction of Fos-immunoreactivity (Fos-IR) as a measure of neuronal activation. We also determined if estradiol or dopamine treatment could induce sexual behavior in NC males. Finally, we compared the testis weight and the number of penile spines in C, NC, and gonadectomized males. In the sexual incentive motivation test C males spend significantly more time in the female incentive zone than in the male incentive zone. On the other hand, NC males spend the same amount of time in both incentive zones. In tests of olfactory preference, NC males spent less time investigating estrous odors than C males. As well, NC males discriminate urine from conspecifics but they spend less time smelling these odors than C males. In addition, no increase in Fos expression is observed in NC males when they are exposed to odors from estrous females. Our data also suggest that the deficits observed in NC males are not due to lower circulating levels of gonadal hormones, because estradiol supplementation does not induce sexual behavior in these animals, and their testis weight and the number of penile spines are normal. The results suggest that NC males are not sexually motivated by the receptive females and their odors.  相似文献   

14.
In two closely related species, females generally prefer conspecific males over heterospecific males. We found that estrous (but not diestrous) female Syrian hamsters Mesocricetus auratus prefer the odors of conspecific males to odors of Turkish hamsters Mesocricetus brandti . However, female Syrian hamsters are not aggressive toward male Turkish hamsters and will readily mate with them. We hypothesize that many generations in captivity led to a reduction in females' ability to avoid inter-species mating, possibly related to the heightened sexual receptivity observed in Mesocricetus hamsters in captivity. To test this hypothesis, we replicated a study carried out with female Turkish hamsters soon after the current laboratory stock of this species was established. In that study, female Turkish hamsters showed lordosis toward male Syrian hamsters in only 20% of interactions and attacked heterospecific males in 80% of the pairings. Using animals descended from that original colony (after many generations in captivity and certain episodes of inbreeding), 100% of female Turkish hamsters mated with heterospecific males and none showed aggression toward heterospecific males. Thus female avoidance of inter-specific mating may be affected by captive rearing conditions.  相似文献   

15.
Zonal organization of the mammalian main and accessory olfactory systems   总被引:2,自引:0,他引:2  
Zonal organization is one of the characteristic features observed in both main and accessory olfactory systems. In the main olfactory system, most of the odorant receptors are classified into four groups according to their zonal expression patterns in the olfactory epithelium. Each group of odorant receptors is expressed by sensory neurons distributed within one of four circumscribed zones. Olfactory sensory neurons in a given zone of the epithelium project their axons to the glomeruli in a corresponding zone of the main olfactory bulb. Glomeruli in the same zone tend to represent similar odorant receptors having similar tuning specificity to odorants. Vomeronasal receptors (or pheromone receptors) are classified into two groups in the accessory olfactory system. Each group of receptors is expressed by vomeronasal sensory neurons in either the apical or basal zone of the vomeronasal epithelium. Sensory neurons in the apical zone project their axons to the rostral zone of the accessory olfactory bulb and form synaptic connections with mitral tufted cells belonging to the rostral zone. Signals originated from basal zone sensory neurons are sent to mitral tufted cells in the caudal zone of the accessory olfactory bulb. We discuss functional implications of the zonal organization in both main and accessory olfactory systems.  相似文献   

16.
Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments.  相似文献   

17.
Female‐emitted pheromonal inputs possess an intrinsic rewarding value for conspecific males, promoting approach and investigation of the potential mating partner. In mice these inputs are detected mainly by the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). We investigated the role of VNO‐mediated inputs in experience‐dependent plasticity of reproductive responses. We applied a sex‐specific conditioned odor aversion (COA) paradigm on adult, wild‐type (WT) male mice and on male mice impaired in VNO‐mediated signal transduction (TrpC2?/?). We found that WT males, which underwent COA to female‐soiled bedding, lost their innate preference to female odors and presented lower motivation to approach a sexually receptive female. COA also abolished the testosterone surge normally seen following exposure to female odors. Moreover, the conditioned males displayed impairments in copulatory behaviors, which lasted for several weeks. Surprisingly, these males also exhibited phobic behaviors towards receptive females, including freezing and fleeing responses. In contrast, WT males which underwent COA specifically to male pheromones showed no change in olfactory preference and only a marginally significant elevation in intermale aggression. Finally, we show that TrpC2?/? males were able to acquire aversion to female‐soiled bedding and presented similar behavioral alterations following COA in their responses to female cues. Our results demonstrate that the intrinsic rewarding value of female pheromones can be overridden through associative olfactory learning, which occurs independently of VNO inputs, probably through MOE signaling.  相似文献   

18.
In males of the grasshopper Chorthippus biguttulus the relationship between song and mating success was investigated in three isolated field populations of individually marked animals within their natural habitat. In a population with muted males (forewings removed), females mated on average 1.7 days later than in a population with intact males. But approximately 14 days after the imaginal moult, roughly corresponding with the time of the first oviposition, 100% of females in both populations had mated. In a further test population, females with a choice between singing and mute males mated almost exclusively (16 from 17 observed copulations) with the intact, singing males. The chance encounter frequency of a male and female was equally high for all populations (on average one encounter every 1.2 h). Different encounter probabilities cannot therefore have caused either mating delay in the population with muted males or preferential selection of intact partners.  相似文献   

19.
Recent studies have indicated that avian social behavior is influenced by olfactory cues. During the reproductive season a change in the chemical composition of uropygial gland secretion has been reported in some species and the hypothesis that olfactory signals may be produced by this gland has been proposed. To examine this hypothesis we performed two behavioral experiments to determine whether a female’s uropygial gland produce chemical signals that stimulate mating behaviors in domestic chickens. In Experiment 1 the role of the female’s uropygial gland in male mating behavior was examined by removing and examining the female’s uropygial gland. The frequency of mounts and copulations of intact male birds with sham-operated female birds was significantly higher than with uropygial glandectomized female birds. With respect to the number of waltzing that is one of the courtship displays intact males showed no significant difference between sham-operated female birds and uropygial glandectomized female birds. In Experiment 2 the relationship between male olfaction and the female’s uropygial gland was investigated using olfactory bulbectomized male birds. The number of mounts and copulations of sham-operated male birds with sham-operated female bird was significantly higher than with uropygial glandectomized female birds. In contrast olfactory bulbectomized male birds showed no significant differences in the number of mounts and copulations between sham-operated female birds and uropygial glandectomized female birds. These results indicate that intact and sham-operated male birds prefer to mate with female birds with the uropygial gland. The number of courtship waltzing of sham-operated male birds showed no significant difference. However olfactory bulbectomized male birds significantly courted to uropygial glandectomized female birds. Summarizing our results show that while anosmic males did not have any preference both intact and sham-operated male birds chose to mate with female birds having an intact uropygial gland suggesting that mate preference involves in male olfaction and that the female’s uropygial gland acts as a source of social odor cues in domestic chickens.  相似文献   

20.
The interpretation of social cues must change during adolescence in order to promote appropriate social interactions in adulthood. For example, adult, but not juvenile, male Syrian hamsters find female pheromones contained in vaginal sections (VS) rewarding, and only adult hamsters engage in sexual behavior with a receptive female. We previously demonstrated that the rewarding value of VS is both testosterone‐ and dopamine‐dependent. Additionally, VS induces Fos expression throughout the mesocorticolimbic circuit in adult but not juvenile hamsters. In this study, we determined whether or not treatment of juvenile male hamsters with testosterone is sufficient to promote adult‐like neural responses to VS. Juvenile and adult male hamsters were gonadectomized and given empty or testosterone‐filled subcutaneous capsules for 1 week. Hamsters were then exposed to either clean or VS‐containing mineral oil on their nares, and brains were collected 1 h later for immunohistochemistry to visualize Fos and tyrosine hydroxylase immunoreactive cells. Testosterone treatment failed to promote adult‐typical patterns of Fos expression in juvenile hamsters; indeed, in some brain regions, juveniles exposed to VS expressed less Fos compared to age‐matched controls while, as expected, adults exposed to VS expressed greater Fos compared to age‐matched controls. Age‐related changes in tyrosine hydroxylase expression were also observed. These data indicate that testosterone cannot activate the adult‐typical pattern of Fos expression in response to female social cues in prepubertal males, and that additional neural maturation during adolescence is required for adult‐typical mesocorticolimbic responses to female pheromones. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73:856–869, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号