首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skinned fibre experiments were conducted to determine if guanine nucleotide-binding proteins play a role in excitation-contraction coupling of skeletal muscle. By itself, the GTP-gamma S, a non hydrolysable GTP analogue was unable to induce calcium release from the sarcoplasmic reticulum, even at concentrations as high as 500 microM. However, calcium- or caffeine-induced calcium releases were enhanced by GTP-gamma S in micromolar concentrations. This response was blocked by GDP-beta S or Pertussis toxin. 32P-ADP-ribosylation catalysed by Pertussis toxin, radiolabelled G-protein alpha subunits in the range of 40 kDa on membrane subcellular fractions of rat skeletal muscle. Using Western blot analysis with antibodies raised against the bovine transducin, G-proteins were identified in frog and rat skeletal muscle subcellular fractions. In most of the muscle fractions (plasma membrane, T-tubules, triads, sarcoplasmic reticulum), the anti-beta subunit antibodies recognized a 36 kDa protein which comigrated with transducin beta subunit. It appears therefore that some of the G-proteins identified by ADP-ribosylation or immunostaining in several subcellular fractions from skeletal muscle, are implicated in the modulation of calcium release from sarcoplasmic reticulum. These results suggest that a Pertussis toxin sensitive G-protein is present at the loci of E-C coupling, and that it serves to regulate the calcium release.  相似文献   

2.
Kelly MN  Irving HR 《Planta》2003,216(4):674-685
Nod factors are lipo-chito-oligosaccharides secreted by rhizobia that initiate many responses in the root hairs of the legume hosts, culminating in deformed hairs. The heterotrimeric G-protein agonists mastoparan, Mas7, melittin, compound 48/80 and cholera toxin provoke root hair deformation, whereas the heterotrimeric G-protein antagonist pertussis toxin inhibits mastoparan and Nod factor NodNGR[S]- (from Rhizobiumsp. NGR234) induced root hair deformation. Another heterotrimeric G-protein antagonist, isotetrandrine, only inhibited root hair deformation provoked by mastoparan and melittin. These results support the notion that G-proteins are implicated in Nod factor signalling. To study the role of G-proteins at a biochemical level, we examined the GTP-binding profiles of root microsomal membrane fractions isolated from the nodulation competent zone of Vigna unguiculata(L.) Walp. GTP competitively bound to the microsomal membrane fractions labelled with [(35)S]GTPgammaS, yielding a two-site displacement curve with displacement constants ( K(i)) of 0.58 micro M and 0.16 mM. Competition with either ATP or GDP revealed a one-site displacement curve with K(i) of 4.4 and 29 micro M, respectively, whereas ADP and UTP were ineffective competitors. The GTP-binding profiles of microsomal membrane fractions isolated from roots pretreated with either NodNGR[S] or the four-sugar, N- N'- N"- N'"-tetracetylchitotetraose (TACT) backbone of Nod factors were significantly altered compared with control microsomal fractions. To identify candidate proteins, membrane proteins were separated by SDS-PAGE and electrotransferred to nitrocellulose. GTP overlay experiments revealed that membrane fractions isolated from roots pretreated with NodNGR[S] or TACT contained two proteins (28 kDa and 25 kDa) with a higher affinity for GTPgammaS than control membrane fractions. Western analysis demonstrated that membranes from the pretreated roots contained more of another protein (~55 kDa) recognised by Galpha(common) antisera. These results provide pharmacological and biochemical evidence supporting the contention that G-proteins are involved in Nod factor signalling and, importantly, implicate monomeric G-proteins in this process.  相似文献   

3.
GTP-binding proteins have been proposed to be involved in some secretory processes. Bordetella pertussis toxin is known to catalyze ADP-ribosylation of several GTP-binding proteins. In this paper, the subcellular localization of B. pertussis toxin substrates has been explored in chromaffin cells of bovine adrenal medulla. With appropriate gel electrophoresis conditions, three ADP-ribosylated substrates of 39, 40 and 41 kDa were detectable in both plasma and granule membranes. The more intense labelling occurred on the 40 kDa component, while the 41 kDa species exhibited electrophoretic mobility similar to that of Gi alpha. Significant immunoreactivity with anti-Go alpha antibodies was detected at the level of the 39 kDa faster component. The association of G-proteins with granule and plasma membranes suggests the involvement of these proteins in the exocytotic process or in its regulation.  相似文献   

4.
A 23 kDa GTP-binding protein was purified from pig heart sarcolemma. This protein was not ADP-ribosylated by cholera, pertussis and botulinum C3 toxins. In pig heart sarcolemma pertussis toxin ADP-ribosylated 40 kDa subunit of Gi-protein, cholera toxin--45 kDa subunit of Gs-protein, botulinum C3 toxin ADP-ribosylated a group of proteins with Mr 22, 26 and 29 kDa. Antiserum generated against the peptide common for all alpha-subunits of G-proteins did not react with purified 23 kDa protein. Trypsin cleaved the 23 kDa protein in the presence of guanyl nucleotides into a 22 kDa fragment. Proteolysis of the 39 kDa alpha 0-subunit from bovine brain plasma membranes and ADP-ribosylated 40 kDa alpha i-subunit from pig heart sarcolemma in the presence of GTP gamma S yielded the 37 and 38 kDa fragments, respectively. In the presence of GTP and GDP the proteolysis of alpha 0 yielded the 24 and 15 kDa fragments, while the proteolysis of ADP-ribosylated alpha i-subunit yielded a labelled 16 kDa peptide. Irrespective of nucleotides trypsin cleaved the ADP-ribosylated 26 kDa substrate of botulinum C3 toxin into two labelled peptides with Mr 24 and 17 kDa. The data obtained indicate the existence in pig heart sarcolemma of a new 23 kDa GTP-binding protein with partial homology to the alpha-subunits of "classical" G-proteins.  相似文献   

5.
On separation of rat pancreatic plasma membrane proteins by two-dimensional gel electrophoresis, 15 GTP-binding protein (G-protein) alpha-subunits could be detected immunochemically using an alpha common antibody. These consisted of five 48 kDa proteins (pI 5.70, 5.80, 5.90, 6.10 and 6.25) and five 45 kDa proteins (pI 5.90, 6.05, 6.25, 6.30 and 6.70), presumably corresponding to low- and high-molecular mass forms of the Gs-protein, as well as three 40/41 kDa proteins (pI 5.50, 5.70 and 6.00) and two 39 kDa proteins (pI 5.50 and 6.00). All of these proteins except for the more acidic 39 kDa protein were ADP-ribosylated by cholera toxin (CT). In addition, the three 40/41 kDa proteins and the more alkaline 39 kDa protein were also ADP-ribosylated by pertussis toxin (PT). CT- and PT-induced ADP-ribosylation changed the pI values of G-protein alpha-subunits by 0.2 pI units to more acidic values. Preincubation of isolated pancreatic membranes with cholecystokinin octapeptide (CCK-OP), which stimulates phospholipase C in acinar cells, decreased CT-induced as well as PT-induced ADP-ribosylation of the three 40/41 kDa proteins, whereas CT-induced ADP-ribosylation of one 45 kDa (pI 5.80) and all 48 kDa proteins was enhanced in the presence of CCK. Carbachol, another stimulant of phospholipase C, had no effect. The three 40/41 kDa proteins and one 48 kDa protein could be labelled with the GTP analogue [alpha-32P]GTP-gamma-azidoanilide. CCK, but not carbachol, stimulated incorporation of the GTP analogue into all of these four proteins. Using different anti-peptide antisera specific for alpha-subunits of G-proteins we identified the three 40/41 kDa Gi-proteins as Gi1 (pI 6.00), Gi2 (pI 5.50) and Gi3 (pI 5.70). The Gi3-protein was found to be the major Gi-protein of pancreatic plasma membranes. One of the 39 kDa proteins (pI 6.0) was identified as Go. These results indicate that CCK receptors functionally interact with six Gs-proteins and with Gi1, Gi2 and Gi3-proteins. Since evidence suggests that a 40/41 kDa CT substrate is involved in the stimulation of phospholipase C in pancreatic acinar cells, it is likely that one, two or all three 40/41 kDa Gi-proteins are involved in the coupling of CCK receptors with phospholipase C.  相似文献   

6.
Herein we describe the distribution of G-proteins in canine cardiac sarcolemma (SL) and sarcoplasmic reticulum (SR) and in rabbit skeletal muscle SL, T-tubules, and junctional and longitudinal SR in comparison to G-proteins of human erythrocyte and bovine brain. G-proteins were unequivocally present in cardiac SL and SR and in skeletal T-tubules. Both cardiac fractions had two substrates specifically ADP-ribosylated by cholera toxin migrating on a sodium dodecyl sulfate-polyacrylamide gel at about 42 and 45 kDa. In skeletal muscle membranes, cholera toxi-labeled substrates migrated at about 42 and 62 kDa. Three substrates for pertussis toxin were resolved by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis in cardiac SL at about 38, 40, and 43 kDa. Only the two higher molecular weight substrates were detected in cardiac SR and in any of several skeletal muscle membrane fractions. Comparison of G-proteins in muscle membrane fractions with G-proteins isolated from bovine brain and human erythrocyte as well as their reaction with antisera to either a common sequence of alpha subunits of G-proteins (G alpha common antibody) or to a unique sequence of the alpha subunit of Go (G alpha o antibody) indicated that the two lower molecular weight bands in cardiac SL are Go or Go-like, and therefore the upper band is probably Gi. These data demonstrate that pertussis toxin substrates are more heterogeneous than previously described and have implications for studies attempting to attribute physiological functions to G-protein isolates.  相似文献   

7.
The G-proteins which regulate hormonal turnover of phosphoinositide (PI) in human umbilical vein endothelial cells have been investigated. A 40-41 kDa doublet present in the membranes of these cells was selectively ADP ribosylated by pertussis toxin (PTx), and this doublet was Gi alpha 2 and Gi alpha 3 according to immunoblotting with specific antisera. By contrast, a doublet of 24-26 kDa proteins in the same membrane preparations was ADP ribosylated by the C3 component of botulinum toxin (BoTx). PTx-dependent ADP ribosylation blocked stimulation of PI turnover by histamine, but did not affect stimulation by bradykinin, whereas BoTx (C2 + C3 components) had the opposite effect. Thus two different groups of G-proteins may be involved in hormone-dependent stimulation of PI turnover in human umbilical vein endothelial cells.  相似文献   

8.
We report the existence of several families of GTP-binding proteins in plasma membranes of Metarhizium anisopliae. Two proteins (18.4 and 24 kDa) resemble mammalian Gn-proteins in their being toxin insensitive, binding [alpha-32P]GTP on nitrocellulose blots of sodium dodecyl sulfate (SDS)-polyacrylamide gels, and also in their immunological properties. Four other proteins (31-38.2 kDa) were similar except that they did not bind [alpha-32P]GTP after treatment with sodium dodecyl sulfate. An 18.2 kDa cholera toxin substrate and three toxin insensitive bands (18.6, 18.8, and 24 kDa) are novel proteins antigenically related both to mammalian G-proteins and ras gene products. An additional 23 kDa pertussis toxin substrate (the major G-protein in a crude mycelial extract) reacted strongly with antisera to G-proteins but not with anti-ras serum. Other substrates ADP ribosylated by cholera toxin or botulinum D toxin were immunologically unreactive. Analysis of the structural and functional characteristics of these multiple GTP-binding proteins will promote a better understanding of signal transduction in fungi.  相似文献   

9.
A novel form of the Go alpha-subunit (alpha o2) has been identified by molecular cloning (Hsu et al., J. Biol. Chem. 265, 11220-11226, 1990). An antibody was generated against a synthetic peptide corresponding to a region of the protein encoded by alpha o2 cDNA. The antibody reacted with an apparently single 39 kDa protein in membrane preparations of rodent brain and with a 39 kDa pertussis toxin substrate in membranes of rodent neuroendocrine and pituitary cells. A previously produced antibody raised against a region common to proteins encoded by alpha o2 cDNA and the previous cloned alpha o1 cDNA (Itoh et al., Proc. Natl. Acad. Sci. USA 83, 3776-3780, 1986) recognized proteins of 39 and 40 kDa in preparations of bovine, porcine and rodent brain and pertussis toxin substrates of 39 and 40 kDa in membranes of rodent neuroendocrine and pituitary cells. We conclude that the 39 kDa Go alpha subunit is encoded by alpha o2 cDNA.  相似文献   

10.
Sea urchin sperm plasma membranes isolated from heads and flagella were used to examine the presence of Gs (stimulatory guanine nucleotide-binding regulatory protein) and small G-proteins. Flagellar plasma membranes incubated with [32P]NAD and cholera toxin (CTX) displayed radiolabeling in a protein of 48 kDa, which was reactive by immunoblotting with a specific antibody against mammalian Gs. CTX-catalyzed [32P]ADP-ribosylation in conjunction with immunoprecipitation with anti-Gs, followed by electrophoresis and autoradiography, revealed one band of 48 kDa. Head plasma membranes, in contrast, did not show substrates for ADP-ribosylation by CTX. In flagellar and head plasma membranes pertussis toxin (PTX) ADP-ribosylated the same protein described previously in membranes from whole sperm; the extent of ADP-ribosylation by PTX was higher in flagellar than in head membranes. Small G-proteins were investigated by [32P]GTP-blotting. Both head and flagellar plasma membranes showed three radiolabeled bands of 28, 25 and 24 kDa. Unlabeled GTP and GDP, but not other nucleotides, interfered with the [α-32P]GTP-binding in a concentration-dependent manner. A monoclonal antibody against human Ras p21 recognized a single protein of 21 kDa only in flagellar membranes. Thus, sea urchin sperm contain a membrane protein that shares characteristics with mammalian Gs and four small G-proteins, including Ras . Gs, Gi and Ras are enriched in flagellar membranes while the other small G-proteins do not display a preferential distribution along the sea urchin sperm plasma membrane. The role of these G-proteins in sea urchin sperm is presently under investigation.  相似文献   

11.
D J Carty  R Iyengar 《FEBS letters》1990,262(1):101-103
Purified preparations of human erythrocyte G-proteins contain a 43 kDa pertussis toxin substrate which appears to be the alpha-subunit of a heterotrimeric GTP-binding protein. The 43 kDa protein is recognized by antisera that are sequence-specific for peptides encoding a sequence common to all 39-53 kDa G-protein alpha-subunits. G alpha o-specific antiserum did not recognize 43 or 40-41 kDa alpha-subunits. AS/6, which recognizes the alpha i proteins, recognized 43 kDa as well as 40-41 kDa proteins. Of the three antisera specific for individual members of the alpha i family, only the Gi3-specific antiserum recognized the 43 kDa erythrocyte G-protein. However, 40-41 kDa forms of all three alpha is are present. These observations indicate that human erythrocytes contain a novel 43 kDa form of Gi3.  相似文献   

12.
The effect of activation of the alpha-subunit(s) of the stimulatory guanine-nucleotide-binding protein, Gs, on levels of this polypeptide(s) associated with the plasma membrane of L6 skeletal myoblasts was ascertained. Incubation of these cells with cholera toxin led to a time- and concentration-dependent 'down-regulation' of both 44 and 42 kDa forms of Gs alpha as assessed by immunoblotting with an anti-peptide antiserum (CS1) able to identify the extreme C-terminus of Gs. The effect of cholera toxin was specific for Gs; levels of Gi alpha in membranes of cholera toxin-treated cells were not different from untreated cells. Down-regulation of Gs was absolutely dependent upon prior ADP-ribosylation, and hence activation of Gs and was not mimicked by other agents which elevate intracellular levels of cyclic AMP. Pretreatment with pertussis toxin, which catalyses ADP-ribosylation of Gi but not of Gs, did not down-regulate either Gi or Gs, demonstrating that covalent modification by ADP-ribosylation is alone not a signal for removal of G-proteins from the plasma membrane.  相似文献   

13.
Previous biochemical and electrophysiological evidence suggests that in invertebrate photoreceptors, a GTP-binding protein (G-protein) mediates the actions of photoactivated rhodopsin in the initial stages of transduction. We find that squid photoreceptors contain more than one protein (molecular masses 38, 42 and 46 kDa) whose ADP-ribosylation by bacterial exotoxins is light-sensitive. Several lines of evidence suggest that these proteins represent distinct alpha subunits of G-proteins. (1) Pertussis toxin and cholera toxin react with distinct subsets of these polypeptides. (2) Only the 42 kDa protein immunoreacts with the monoclonal antibody 4A, raised against the alpha subunit of the G-protein of vertebrate rods [Hamm & Bownds (1984) J. Gen. Physiol. 84. 265-280]. (3) In terms of ADP-ribosylation, the 42 kDa protein is the least labile to freezing. (4) Of the 38 kDa and 42 kDa proteins, the former is preferentially extracted with hypo-osmotic solutions, as demonstrated by the solubility of its ADP-ribosylated state and by the solubility of the light-dependent binding of guanosine 5'-[gamma-thio]triphosphate. The specific target enzymes for the observed G-proteins have not been established.  相似文献   

14.
Antibody-induced antigenic modulation occurs after binding of antibodies to a variety of cell surface proteins. It is characterized by aggregation and subsequent loss of the molecules from the cell surface, usually by internalization. In this study we have investigated the effect of modulation of the T-cell antigen receptor complex (TCR) and the transferrin receptor (TFR) on the distribution of cholera toxin (CTx)- and pertussis toxin (PTx)-sensitive GTP binding proteins in human T-lymphocytes. Modulation of both the TCR and the TFR induced a selective shift of PTx-sensitive G-proteins from the plasma membrane to a high density membrane fraction enriched for lysosomal membranes. The distribution of CTx-sensitive G-proteins was unaffected. This shift was found in both the T-cell leukemia line Jurkat and in normal T-cells. The loss of PTx-sensitive G-proteins from the plasma membrane required approximately 15 h to be complete and was not inhibited by cycloheximide. It had no influence on T-cell triggering via anti-T-cell receptor antibodies and is unrelated to the inactivating effect of TCR-modulation on T-cell signalling. The loss of PTx-sensitive G-proteins was not accompanied by greater sensitivity to stimuli raising cAMP concentration. These results show that PTx-sensitive G-proteins can be selectively depleted from the plasma membrane by antibody treatment of T-cells.  相似文献   

15.
GTP-binding regulatory proteins (G-proteins) were identified in chemosensory membranes from the channel catfish, Ictalurus punctatus. The common G-protein beta-subunit was identified by immunoblotting in both isolated olfactory cilia and purified taste plasma membranes. A cholera toxin substrate (Mr 45,000), corresponding to the G-protein that stimulates adenylate cyclase, was identified in both membranes. Both membranes also contained a single pertussis toxin substrate. In taste membranes, this component co-migrated with the alpha-subunit of the G-protein that inhibits adenylate cyclase. In olfactory cilia, the Mr 40,000 pertussis toxin substrate cross-reacted with antiserum to the common amino acid sequence of G-protein alpha-subunits, but did not cross-react with antiserum to the alpha-subunit of the G-protein from brain of unknown function. The interaction of G-proteins with chemosensory receptors was determined by monitoring receptor binding affinity in the presence of exogenous guanine nucleotides. L-Alanine and L-arginine bind with similar affinity to separate receptors in both olfactory and gustatory membranes from the catfish. GTP and a nonhydrolyzable analogue decreased the affinity of olfactory L-alanine and L-arginine receptors by about 1 order of magnitude. In contrast, the binding affinities of the corresponding taste receptors were unaffected. These results suggest that olfactory receptors are functionally coupled to G-proteins in a manner similar to some hormone and neurotransmitter receptors.  相似文献   

16.
The nature of the G-proteins present in the pre- and post-synaptic plasma membranes and in the synaptic vesicles of cholinergic nerve terminals purified from the Torpedo electric organ was investigated. In pre- and post-synaptic plasma membranes, Bordetella pertussis toxin, known to catalyze the ADP-ribosylation of the alpha-subunit of several G-proteins, labels two substrates at 41 and 39 kDa. The 39 kDa subunit detected by ADP-ribosylation in the synaptic plasma membrane fractions was immunologically similar to the Go alpha-subunit purified from calf brain. In contrast to bovine chromaffin cell granules, no G-protein could be detected in Torpedo synaptic vesicles either by ADP-ribosylation or by immunoblotting.  相似文献   

17.
Biochemical analysis revealed the presence of GTP-binding proteins (G-proteins) in Catharanthus roseus hairy root cultures. In a microsomal fraction, several proteins, with molecular masses of 17, 21, 38, 42, 65, and 79 kDa were substrates for ADP-ribosylation by cholera toxin. Antisera raised against a conserved amino-acid sequence (GTSNSGKSTIVKQMK) of mammalian G α subunits recognized three proteins of 42, 50, and 79 kDa. Incubation of nitrocellulose blots with [ α -32P]-GTP also indicated the presence of several proteins (17, 21, 50, and 79 kDa) that could bind GTP. In this system, we previously identified a phosphatidylinositol 4,5-bisphosphate-phospholipase C (PLC, EC 3.1.4.11) activity. As the activation of PLC by G-proteins was described, we decided to see whether, in our system, G-protein activators, such as guanosine 5- o -(3-thiotriphosphate) (GTP Γ S) and sodium fluoride ions, were able to regulate PLC activity in C. roseus transformed roots. Our results show that these agents regulated PLC activity in an inhibitory fashion and that this effect is dose-dependent. GTP was ineffective in producing either stimulation or inhibition of PLC activity. Our results demonstrate that non-hydrolyzable guanine nucleotides and fluoride ions exert an inhibitory effect on membrane PLC activity. In summary, a set of proteins of 17, 21, 38, 42, 50, and 79 kDa present in C. roseus transformed roots possessed at least two of the three main characteristics of a GTP-binding protein, and one of these proteins may be involved in the regulation of PLC activity in C. roseus transformed roots.  相似文献   

18.
During early embryonic development, many inductive interactions between tissues depend on signal transduction processes. We began to test the possibility that G-proteins participate in the signal transduction pathways that mediate neural induction. The expression during Xenopus development of three G alpha subunits, G alpha 0, G alpha i-1 and G alpha s-1, was characterized. The three maternally expressed genes showed different expression patterns during early development. Whole-mount in situ hybridization revealed that all three genes were expressed almost exclusively in the gastrula ectoderm and predominantly in the neuroectoderm in the neurula embryo. In order to investigate the involvement of these proteins in neural induction, we overexpressed the G-protein alpha subunits by injecting the G alpha mRNAs into fertilized eggs. Overexpression of G alpha s-1 increased the ability of gastrula ectoderm to become induced to neural tissue approximately four-fold. Overexpression of G alpha 0 and G alpha i-1 had less pronounced effects on neural competence, and inhibition of the G alpha 0 and G alpha i-1 proteins by pertussis toxin did not change the neural competence of the exposed gastrula ectoderm. Overexpression of the G alpha 0 and G alpha i-1 genes did, however, inhibit the normal disappearance of the blastocoel during gastrulation, suggesting a role for these G-proteins in regulating this process. The data also suggest a specific role for the G alpha s subunit in mediating the initial phases of neural induction.  相似文献   

19.
Native membranes from human erythrocytes contain the following G proteins which are ADP-ribosylated by a number of bacterial toxins: Gi alpha and Go alpha (pertussis toxin), Gs alpha (cholera toxin), and three proteins of 27, 26 and 22 kDa (exoenzyme C3 from Clostridium botulinum). Three additional C3 substrates (18.5, 16.5 and 14.5 kDa) appeared in conditions of unrestrained proteolysis during hemolysis. SDS-PAGE separation of erythrocyte membrane proteins followed by electroblotting and incubation of nitrocellulose sheets with radiolabeled GTP revealed consistently four GTP-binding proteins with Mr values of 27, 26, 22 and 21 kDa. Although a 22 kDa protein was immunochemically identified as ras p21, the C3 substrate of 22 kDa is a different protein probably identifiable with a rho gene product. Accordingly, at least five distinct small molecular weight guanine nucleotide-binding proteins, whose functions are so far undetermined, are present in native human erythrocyte membranes.  相似文献   

20.
The subcellular distribution of GTP binding proteins in human neutrophils and their functional coupling to the N-formylmethionylleucylphenylalanine (FMLP) receptor was characterized to provide insight into mechanisms of cellular activation. Human neutrophils were nitrogen cavitated and fractionated on discontinuous Percoll gradients. Four subcellular fractions were obtained: cytosol, light membranes enriched for plasma membranes, specific granules and azurophilic granules. ADP-ribosylation catalyzed by pertussis toxin (PT) revealed a major substrate of 40 kDa only in plasma membrane and cytosol, and antiserum specific for Gi alpha confirmed the presence of neutrophil Gi alpha in plasma membrane and cytosol and its absence from specific granules. The cytosolic PT substrate was shown to be mostly in monomeric form by molecular sieve chromatography. The rate of the ribosyltransferase reaction was several-fold lower in cytosol compared to plasma membranes, and the extent of ADP-ribosylation was greatly augmented by supplementation with beta gamma subunits in cytosol. ADP-ribosylation catalyzed by cholera toxin (CT) revealed substrates of 52, 43 and 40 kDa in plasma membrane alone. FMLP receptors in plasma membrane were shown to be coupled to the 40 kDa substrate for CT by ligand-modulation of ADP-ribosylation, while FMLP added to specific granules did not induce ribosylation of this substrate even though FMLP receptors were found in high density in this compartment. Both 24 and 26 kDa [32P]GTP binding proteins were found to codistribute with FMLP receptors in specific granules and plasma membranes. Functional evidence for the coupling of GTP binding proteins to the FMLP receptor in specific granules was obtained by modulating [3H]FMLP binding with GTP gamma S, and by accelerating [35S]GTP gamma S binding with FMLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号