首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Chroni A  Duka A  Kan HY  Liu T  Zannis VI 《Biochemistry》2005,44(43):14353-14366
We have analyzed the effect of charged to neutral amino acid substitutions around the kinks flanking helices 4 and 6 of apoA-I and of the deletion of helix 6 on the in vivo activity of LCAT and the biogenesis of HDL. The LCAT activation capacity of apoA-I in vitro was nearly abolished by the helix 6 point (helix 6P-apoA-I[R160V/H162A]) and deletion {helix 6Delta-apoA-I[Delta(144-165)]} mutants, but was reduced to 50% in the helix 4 point mutant (helix 4P-apoA-I[D102A/D103A]). Following adenovirus-mediated gene transfer in apoA-I deficient mice, the level of plasma HDL cholesterol was greatly reduced in helix 6P and helix 6Delta mutants. Electron microscopy and two-dimensional gel electrophoresis showed that the helix 6P mutant formed predominantly high levels of apoA-I containing discoidal particles and had an increased prebeta1-HDL/alpha-HDL ratio. The helix 6Delta mutant formed few spherical particles and had an increased prebeta1-HDL/alpha-HDL ratio. Mice infected with adenovirus expressing the helix 4P mutant or wild-type apoA-I had normal HDL cholesterol and formed spherical alpha-HDL particles. Coinfection of mice with adenoviruses expressing human LCAT and the helix 6P mutant dramatically increased plasma HDL and apoA-I levels and converted the discoidal into spherical HDL, indicating that the LCAT activity was rate-limiting for the biogenesis of HDL. The LCAT treatment caused only a small increase in HDL cholesterol and apoA-I levels and in alpha-HDL particle numbers in the helix 6Delta mutant. The findings indicate a critical contribution of residue 160 of apoA-I to the in vivo activity of LCAT and the subsequent maturation of HDL and explain the low HDL levels in heterozygous subjects carrying this mutation.  相似文献   

2.
Chroni A  Kan HY  Shkodrani A  Liu T  Zannis VI 《Biochemistry》2005,44(10):4108-4117
The objective of this study was to determine the effect of two amino-terminal apolipoprotein A-I (apoA-I) deletions on high-density lipoprotein (HDL) biosynthesis and lipid homeostasis. Adenovirus-mediated gene transfer showed that the apoA-I[Delta(89-99)] deletion mutant caused hypercholesterolemia, characterized by increased plasma cholesterol and phospholipids, that were distributed in the very low density/intermediate density/low-density lipoprotein (VLDL/IDL/LDL) region, and normal triglycerides. The capacity of the mutant protein to promote ATP-binding cassette transporter A1- (ABCA1-) mediated cholesterol efflux and to activate lecithin:cholesterol acyltranserase (LCAT) was approximately 70-80% of the wild-type (WT) control. The phospholipid transfer protein (PLTP) activity of plasma containing the apoA-I[Delta(89-99)] mutant was decreased to 32% of the WT control. Similar analysis showed that the apoA-I[Delta(62-78)] deletion mutant in apoA-I-deficient mice caused combined hyperlipidemia characterized by increased triglycerides, cholesterol, and phospholipids in the VLDL/IDL region. There was enrichment of the VLDL/IDL with mutant apoA-I that resulted in reduction of in vitro lipolysis. The capacity of this mutant to promote ABCA1-mediated cholesterol efflux was normal, and the capacity to activate LCAT in vitro was reduced by 53%. The WT apoA-I and the apoA-I[Delta(62-78)] mutant formed spherical HDL particles, whereas the apoA-I[Delta(89-99)] mutant formed discoidal HDL particles. We conclude that alterations in apoA-I not only may have adverse effects on HDL biosynthesis but also may promote dyslipidemia due to interference of the apoA-I mutants on the overall cholesterol and triglycerides homeostasis.  相似文献   

3.
Chroni A  Koukos G  Duka A  Zannis VI 《Biochemistry》2007,46(19):5697-5708
ATP-binding cassette transporter A-1 (ABCA1)-mediated lipid efflux to lipid-poor apolipoprotein A-I (apoA-I) results in the gradual lipidation of apoA-I. This leads to the formation of discoidal high-density lipoproteins (HDL), which are subsequently converted to spherical HDL by the action of lecithin:cholesterol acyltransferase (LCAT). We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I-deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Delta(232-243)] deletion mutant, or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] mutants formed mainly prebeta-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Delta(232-243)], and apoA-I[E191A/H193A/K195A] formed spherical alpha-HDL particles. The findings establish that (a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of alpha-HDL but allow the synthesis of prebeta-HDL particles in vivo, (b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of prebeta-HDL-type particles in an ABCA1-independent process, and (c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL.  相似文献   

4.
To explore the functional interactions between apoA-I and ABCA1, we correlated the cross-linking properties of several apoA-I mutants with their ability to promote cholesterol efflux. In a competitive cross-linking assay, amino-terminal deletion and double amino- and carboxy-terminal deletion mutants of apoA-I competed effectively the cross-linking of WT (125)I-apoA-I to ABCA1, while the carboxy-terminal deletion mutant apoA-I[Delta(220-243)] competed poorly. Direct cross-linking of WT apoA-I, amino-terminal, and double deletion mutants of apoA-I to ABCA1 showed similar apparent K(d) values (49-74 nM), whereas the apparent K(d) values of the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] were increased 3-fold. Analysis of several internal deletions and point mutants of apoA-I showed that apoA-I[Delta(61-78)], apoA-I[Delta(89-99)], apoA-I[Delta(136-143)], apoA-I[Delta(144-165)], apoA-I[D102A/D103A], apoA-I[E125K/E128K/K133E/E139K], apoA-I[L141R], apoA-I[R160V/H162A], and WT apoA-I had similar ABCA1-mediated lipid efflux, and all competed efficiently the cross-linking of WT (125)I-apoA-I to ABCA1. WT apoA-I and ABCA1 could be cross-linked with a 3 A cross-linker. The WT apoA-I, amino, carboxy and double deletion mutants of apoA-I showed differences in the cross-linking to WT ABCA1 and the mutant ABCA1[W590S]. The findings are consistent with a direct association of different combinations of apoA-I helices with a complementary ABCA1 domain. Mutations that alter ABCA1/apoA-I association affect cholesterol efflux and inhibit biogenesis of HDL.  相似文献   

5.
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.  相似文献   

6.
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.  相似文献   

7.
In this study, we investigated the role of positively and negatively charged amino acids within the 89-99 region of apolipoprotein A-I (apoA-I), which are highly conserved in mammals, on plasma lipid homeostasis and the biogenesis of HDL. We previously showed that deletion of the 89-99 region of apoA-I increased plasma cholesterol and phospholipids, but it did not affect plasma triglycerides. Functional studies using adenovirus-mediated gene transfer of two apoA-I mutants in apoA-I-deficient mice showed that apoA-I[D89A/E91A/E92A] increased plasma cholesterol and caused severe hypertriglyceridemia. HDL levels were reduced, and approximately 40% of the apoA-I was distributed in VLDL/IDL. The HDL consisted of mostly spherical and a few discoidal particles and contained preβ1 and α4-HDL subpopulations. The lipid, lipoprotein, and HDL profiles generated by the apoA-I[K94A/K96A] mutant were similar to those of wild-type (WT) apoA-I. Coexpression of apoA-I[D89A/E91A/E92A] and human lipoprotein lipase abolished hypertriglyceridemia, restored in part the α1,2,3,4 HDL subpopulations, and redistributed apoA-I in the HDL2/HDL3 regions, but it did not prevent the formation of discoidal HDL particles. Physicochemical studies showed that the apoA-I[D89A/E91A/E92A] mutant had reduced α-helical content and effective enthalpy of thermal denaturation, increased exposure of hydrophobic surfaces, and increased affinity for triglyceride-rich emulsions. We conclude that residues D89, E91, and E92 of apoA-I are important for plasma cholesterol and triglyceride homeostasis as well as for the maturation of HDL.  相似文献   

8.
The deletion mutation Delta6 apolipoprotein A-I lacks residues 143-164 or repeat 6 in the mature apoA-I protein. In vitro studies show this mutation dramatically reduces the rate of lecithin:cholesterol acyltransferase (LCAT) catalyzed cholesterol esterification. The present study was initiated to investigate the effect of this mutation on in vivo high density lipoprotein (HDL) cholesterol esterification and metabolism. Transgenic mice expressing human Delta6 apoA-I (TgDelta6 +/+) were created and then crossed with apoA-I knockout mice (-/-) to generate mice expressing only human Delta6 apoA-I (TgDelta6 -/-). Human Delta6 apoA-I was associated with homogeneous sized alpha-HDL, when wild-type mouse apoA-I was present (in TgDelta6 +/+ and +/- mice). However, in the absence of endogenous mouse apoA-I, Delta6 apoA-I was found exclusively in cholesterol ester-poor HDL, and lipid-free HDL fractions. This observation coincides with the 6-fold lower cholesterol ester mass in TgDelta6 -/- mouse plasma compared with control. Structural studies show that despite the structural perturbation of a domain extending from repeat 5 to repeat 8 (137-178), Delta6 apoA-I binds to spherical unilamellar vesicles with only 2-fold less binding affinity. In summary, these data show a domain corresponding to apoA-I repeat 6 is responsible for providing an essential conformation for LCAT catalyzed generation of cholesterol esters. Deletion of apoA-I repeat 6 not only blocks normal levels of cholesterol esterification but also exerts a dominant inhibition on the ability of wild-type apoA-I to activate LCAT in vivo.  相似文献   

9.
To investigate the role of the N terminus of apolipoprotein A-I (apoA-I) in the maturation of high density lipoproteins (HDL), two N-terminal mutants with deletions of residues 1-43 and 1-65 (referred to as Delta 1-43 and Delta 1-65 apoA-I) were studied. In vitro, these deletions had little effect on cellular cholesterol efflux from macrophages but LCAT activation was reduced by 50 and 70% for the Delta 1-43 and Delta 1-65 apoA-I mutants, respectively, relative to wild-type (Wt) apoA-I. To further define the role of the N terminus of apoA-I in HDL maturation, we constructed recombinant adenoviruses containing Wt apoA-I and two similar mutants with deletions of residues 7-43 and 7-65 (referred to as Delta 7-43 and Delta 7-65 apoA-I, respectively). Residues 1-6 were not removed in these mutants to allow proper cleavage of the pro-sequence in vivo. Following injection of these adenoviruses into apoA-I-deficient mice, plasma concentrations of both Delta 7-43 and Delta 7-65 apoA-I were reduced 4-fold relative to Wt apoA-I. The N-terminal deletion mutants, in particular Delta 7-65 apoA-I, were associated with greater proportions of pre beta-HDL and accumulated fewer HDL cholesteryl esters relative to Wt apoA-I. Wt and Delta 7-43 apoA-I formed predominantly alpha-migrating and spherical HDL, whereas Delta 7-65 apoA-I formed only pre beta-HDL of discoidal morphology. This demonstrates that deletion of the first class A amphipathic alpha-helix has a profound additive effect in vivo over the deletion of the globular domain alone (amino acids 1-43) indicating its important role in the production of mature alpha-migrating HDL. In summary, the combined in vitro and in vivo studies demonstrate a role for the N terminus of apoA-I in lecithin:cholesterol acyltransferase activation and the requirement of the first class A amphipathic alpha-helix for the maturation of HDL in vivo.  相似文献   

10.
Recombinant adenoviruses with cDNAs for human apolipoprotein A-I (wild type (wt) apoA-I) and three mutants, referred to as Delta4-5A-I, Delta5-6A-I, and Delta6-7A-I, that have deletions removing regions coding for amino acids 100-143, 122-165, and 144-186, respectively, were created to study structure/function relationships of apoA-I in vivo. All mutants were expressed at lower concentrations than wt apoA-I in plasma of fasting apoA-I-deficient mice. The Delta5-6A-I mutant was found primarily in the lipid-poor high density lipoprotein (HDL) pool and at lower concentrations than Delta4-5A-I and Delta6-7A-I that formed more buoyant HDL(2/3) particles. At an elevated adenovirus dose and earlier blood sampling from fed mice, both Delta5-6A-I and Delta6-7A-I increased HDL-free cholesterol and phospholipid but not cholesteryl ester. In contrast, wt apoA-I and Delta4-5A-I produced significant increases in HDL cholesteryl ester. Further analysis showed that Delta6-7A-I and native apoA-I could bind similar amounts of phospholipid and cholesterol that were reduced slightly for Delta5-6A-I and greatly for Delta4-5A-I. We conclude from these findings that amino acids (aa) 100-143, specifically helix 4 (aa 100-121), contributes to the maturation of HDL through a role in lipid binding and that the downstream sequence (aa 144-186) centered around helix 6 (aa 144-165) is responsible for the activation of lecithin-cholesterol acyltransferase.  相似文献   

11.
The molecular mechanisms underlying the apoA-I/ABCA1 endocytic trafficking pathway in relation to high density lipoprotein (HDL) formation remain poorly understood. We have developed a quantitative cell surface biotinylation assay to determine the compartmentalization and trafficking of apoA-I between the plasma membrane (PM) and intracellular compartments (ICCs). Here we report that (125)I-apoA-I exhibited saturable association with the PM and ICCs in baby hamster kidney cells stably overexpressing ABCA1 and in fibroblasts. The PM was found to have a 2-fold higher capacity to accommodate apoA-I as compared with ICCs. Overexpressing various levels of ABCA1 in baby hamster kidney cells promoted the association of apoA-I with PM and ICCs compartments. The C-terminal deletion of apoA-I Delta(187-243) and reconstituted HDL particles exhibited reduced association of apoA-I with both the PM and ICCs. Interestingly, cell surface biotinylation with a cleavable biotin revealed that apoA-I induces ABCA1 endocytosis. Such endocytosis was impaired by naturally occurring mutations of ABCA1 (Q597R and C1477R). To better understand the role of the endocytotic pathway in the dynamics of the lipidation of apoA-I, a pulse-chase experiment was performed, and the dissociation (re-secretion) of (125)I-apoA-I from both PM and ICCs was monitored over a 6-h period. Unexpectedly, we found that the time required for 50% dissociation of (125)I-apoA-I from the PM was 4-fold slower than that from ICCs at 37 degrees C. Finally, treatment of the cells with phosphatidylcholine-specific phospholipase C, increased the dissociation of apoA-I from the PM. This study provides evidence that the lipidation of apoA-I occurs in two kinetically distinguishable compartments. The finding that apoA-I specifically mediates the continuous endocytic recycling of ABCA1, together with the kinetic data showing that apoA-I associated with ICCs is rapidly re-secreted, suggests that the endocytotic pathway plays a central role in the genesis of nascent HDL.  相似文献   

12.
We have studied the effects of mutations in apoA-I on reconstituted high density lipoprotein (HDL) particle (rHDL(apoA-I)) binding to and cholesterol efflux from wild-type (WT) and mutant forms of the HDL receptor SR-BI expressed by ldlA-7 cells. Mutations in helix 4 or helix 6 of the apoA-I reduced efflux by 79 and 51%, respectively, without substantially altering receptor binding (apparent K(d) values of 1.1-4.4 microg of protein/ml). SR-BI with an M158R mutation bound poorly to rHDL with WT and helix 4 mutant apoA-I; the helix 6 mutant restored tight binding to SR-BI(M158R) (K(d) values of 48, 60, and 7 microg of protein/ml, respectively). SR-BI(M158R)-mediated cholesterol efflux rates, normalized for binding, were high for all three rHDLs (71-111% of control). In contrast, absolute (12-19%) and binding-corrected (24-47%) efflux rates for all three rHDLs mediated by SR-BI with Q402R/Q418R mutations were very low. We propose that formation of a productive complex between apoA-I in rHDL and SR-BI, in which the lipoprotein and the receptor must either be precisely aligned or have the capacity to undergo appropriate conformational changes, is required for efficient SR-BI-mediated cholesterol efflux. Some mutations in apoA-I and/or SR-BI can result in high affinity, but non-productive, binding that does not permit efficient cholesterol efflux.  相似文献   

13.
Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for generation of the majority of the cholesteryl esters (CE) in human plasma. Although most plasma cholesterol esterification occurs on high-density lipoprotein (HDL), via alpha-LCAT activity, esterification also occurs on low-density lipoprotein (LDL) via the beta-activity of the enzyme. Computer threading techniques have provided a three-dimensional model for use in the structure-function analysis of the core and catalytic site of the LCAT protein, but the model does not extend to the N-terminal region of the enzyme, which may mediate LCAT interaction with lipoprotein substrates. In the present study, we have examined the functional consequences of deletion of the highly conserved hydrophobic N-terminal amino acids (residues 1-5) of human LCAT. Western blot analysis showed that the mutant proteins (Delta 1-Delta 5) were synthesized and secreted from transfected COS-7 cells at levels approximately equivalent to those of wild-type hLCAT. The secreted proteins had apparent molecular weights of 67 kDa, indicating that they were correctly processed and glycosylated during cellular transit. However, deletion of the first residue of the mature LCAT protein (Delta 1 mutant) resulted in a dramatic loss of alpha-LCAT activity (5% of wild type using reconstituted HDL substrate, rHDL), although this mutant retained full beta-LCAT activity (108% of wild-type using human LDL substrate). Removal of residues 1 and 2 (Delta 2 mutant) abolished alpha-LCAT activity and reduced beta-LCAT activity to 12% of wild type. Nevertheless, LCAT Delta 1 and Delta 2 mutants retained their ability to bind to rHDL and LDL lipoprotein substrates. The dramatic loss of enzyme activity suggests that the N-terminal residues of LCAT may be involved in maintaining the conformation of the lid domain and influence activation by the alpha-LCAT cofactor apoA-I (in Delta 1) and/or loss of enzyme activity (in Delta 1-Delta 5). Since the Delta 1 and Delta 2 mutants retain their ability to bind substrate, other factor(s), such as decreased access to the substrate binding pocket, may be responsible for the loss of enzyme activity.  相似文献   

14.
Epidemiologic and genetic data suggest an inverse relationship between plasma high density lipoprotein (HDL) cholesterol and the incidence of premature coronary artery disease. Some of the defects leading to low levels of HDL may be a consequence of mutations in the genes coding for HDL apolipoproteins A-I and A-II or for enzymes that modify these particles. A proband with plasma apoA-I and HDL cholesterol that are below 15% of normal levels and with marked bilateral arcus senilis was shown to be heterozygous for a 45-base pair deletion in exon four of the apoA-I gene. This most likely represents a de novo mutation since neither parent carries the mutant allele. The protein product of this allele is predicted to be missing 15 (Glu146-Arg160) of the 22 amino acids comprising the third amphipathic helical domain. The HDL of the proband and his family were studied. Using anti-A-I and anti-A-II immunosorbents we found three populations of HDL particles in the proband. One contained both apoA-I and A-II, Lp(A-I w A-II); one contained apoA-I but no A-II, Lp(A-I w/o A-II); and the third (an unusual one) contained apoA-II but no A-I. Only Lp(A-I w A-II) and (A-I w/o A-II) were present in the plasma of the proband's parents and brother. Analysis of the HDL particles of the proband by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two protein bands with a molecular mass differing by 6% in the vicinity of 28 kDa whereas the HDL particles of the family members exhibited only a single apoA-I band. The largely dominant effect of this mutant allele (designated apoA-ISeattle) on HDL levels suggests that HDL particles containing any number of mutant apoA-I polypeptides are catabolized rapidly.  相似文献   

15.
In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.  相似文献   

16.
Five mutants of apolipoprotein A-I (apoA-I), apoA-I(Delta63-73), apoA-I(Delta140-150), apoA-I(63-73@140-150), apoA-I(R149V), and apoA-I(P143A) were compared with human plasma apoA-I for their ability to promote cholesterol and phospholipid efflux from HepG2 cells. A significantly lower capacity to promote cholesterol and phospholipid efflux was observed with lipid-free apoA-I(Delta63-73), while mutations apoA-I(Delta140-150) and apoA-I(P143A) affected phospholipid efflux only. When added as apoA-I/palmitoyloleoyl phosphatidylcholine (POPC) complex, mutations apoA-I(63-73@140-150) and apoA-I(Delta140-150) affected cholesterol efflux. None of the mutations affected alpha-helicity of the lipid-free mutants or their self-association. Five natural mutations of apoA-I, apoA-I(A95D), apoA-I (Y100H), apoA-I(E110K), apoA-I(V156E), and apoA-I (H162Q) were studied for their ability to bind lipids and promote cholesterol efflux. None of the mutations affected lipid-binding properties, cholesterol efflux, or alpha-helicity of lipid-free mutants. Two mutations affected self-association of apoA-I: apoA-I(A95D) was more prone to self-association, while apoA-I(E100H) did not self-associate. The following conclusions could be made from the combined data: i) regions 210-243 and 63-100 are the lipid-binding sites of apoA-I and are also required for the efflux of lipids to lipid-free apoA-I, suggesting that initial lipidation of apoA-I is rate limiting in efflux; ii) in addition to the lipid-binding regions, the central region is important for cholesterol efflux to lipidated apoA-I, suggesting its possible involvement in interaction with cells.  相似文献   

17.
Intracellular forms of chylomicrons, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) have previously been isolated from the rat intestine. These intracellular particles are likely to be nascent precursors of secreted lipoproteins. To study the distribution of intracellular apolipoprotein among nascent lipoproteins, a method to isolate intracellular lipoproteins was developed and validated. The method consists of suspending isolated enterocytes in hypotonic buffer containing a lipase inhibitor, rupturing cell membranes by nitrogen cavitation, and isolating lipoproteins by sequential ultracentrifugation. ApoB and apoA-I mass are determined by radioimmunoassay and newly synthesized apolipoprotein characterized following [3H]leucine intraduodenal infusion. Intracellular chylomicron, VLDL, low density lipoprotein (LDL), and HDL fractions were isolated and found to contain apoB, and apoA-IV, and apoA-I. In the fasted animal, less than 10% of total intracellular apoB and apoA-I was bound to lipoproteins and 7% of apoB and 35% of apoA-I was contained in the d 1.21 g/ml infranatant. The remainder of intracellular apolipoprotein was in the pellets of centrifugation. Lipid feeding doubled the percentage of intracellular apoA-I bound to lipoproteins and increased the percentage of intracellular apoB bound to lipoproteins by 65%. Following lipid feeding, the most significant increase was in the chylomicron apoB and HDL apoA-I fractions. These data suggest that in the fasting state, 90% of intracellular apoB and apoA-I is not bound to lipoproteins. Lipid feeding shifts intracellular apolipoprotein onto lipoproteins, but most intracellular apolipoprotein remains non-lipoprotein bound. The constant presence of a large non-lipoprotein-bound pool suggests that apolipoprotein synthesis is not the rate limiting step in lipoprotein assembly or secretion.  相似文献   

18.
Fang Y  Gursky O  Atkinson D 《Biochemistry》2003,42(45):13260-13268
Apolipoprotein A-I (apoA-I, 243 amino acids) is the major protein of high-density lipoproteins (HDL) that plays an important structural and functional role in lipid transport and metabolism. The central region of apoA-I (residues 60-183) is predicted to contain exclusively amphipathic alpha-helices formed from tandem 22-mer sequence repeats. To analyze the lipid-binding properties of this core domain, four terminally truncated mutants of apoA-I, Delta(1-41), Delta(1-59), Delta(1-41,185-243), and Delta(1-59,185-243), were expressed in baculovirus infected Sf-9 cells. The effects of mutations on the ability of apoA-I to form bilayer disk complexes with dimyristoyl phosphatidylcholine (DMPC) that resemble nascent HDL were analyzed by density gradient ultracentrifugation and electron microscopy (EM). The N-terminal deletion mutants, Delta(1-41) and Delta(1-59), showed altered lipid-binding ability as compared to plasma and wild-type apoA-I, and in the double deletion mutants, Delta(1-41, 185-243) and Delta(1-59, 185-243), the lipid binding was abolished. Thermal unfolding of variant apoA-I/DMPC complexes monitored by circular dichroism (CD) showed hysteresis and a shift in the melting curves by about -12 degrees C upon reduction in the heating rate from 1.0 to 0.067 K/min. This indicates an irreversible kinetically controlled transition with a high activation energy E(a) = 60 +/- 5 kcal/mol. CD and EM studies of the apoA-I/DMPC complexes at different pH demonstrated that changes in the net charge or in the charge distribution on the apoA-I molecule have critical effects on the conformation and lipid-binding ability of the protein.  相似文献   

19.
The previous studies in our laboratory revealed that seven cysteine mutants of apolipoprotein A-I (apoA-I) have different structural features and biological activities in vitro and in vivo. To investigate the potential cardioprotective effects of apolipoprotein A-I(N74C) [apoA-I(N74C)], we examined the anti-inflammatory, antioxidant, and antiatherosclerotic effects of this cysteine mutant in a rapid atherosclerosis model induced by perivascular carotid collar placement in apoE−/− mice. Lipid-free apoA-I(N74C) showed a significant increased antioxidant potency in low density lipoprotein (LDL) oxidation in vitro and reduced intracellular lipid accumulation in THP-1-derived macrophages, relative to wild-type apoA-I (apoA-Iwt). Mice injected with recombinant HDL (rHDL) reconstituted with apoA-I(N74C) (named rHDL74) through tail veins (40 mg/kg of body weight, three injections) had a significant lower level of serum interleukin-6 (IL-6) and enhanced serum antioxidation compared with mice receiving rHDL reconstituted with apoA-Iwt (named rHDLwt). Moreover, compared with rHDLwt, the rHDL74 in vivo injection resulted in a significant decrease in plaque size, ratio of aorta intima to media, arterial remodeling, and macrophage content in lesions. In summary, intravenous injection with rHDL74 reconstituted with apoA-I cysteine mutant apoA-I (N74C) dramatically delays the development of atherosclerosis induced by perivascular carotid collar placement and reduces vascular remodeling in the carotid artery in apoE−/− mice.  相似文献   

20.
Plasma concentrations of high density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo)A-I are significantly decreased in inflammatory states. Plasma levels of the serum amyloid A (SAA) protein increase markedly during the acute phase response and are elevated in many chronic inflammatory states. Because SAA is associated with HDL and has been shown to be capable of displacing apoA-I from HDL in vitro, it is believed that expression of SAA is the primary cause of the reduced HDL cholesterol and apoA-I in inflammatory states. In order to directly test this hypothesis, we constructed recombinant adenoviruses expressing the murine SAA and human SAA1 genes (the major acute phase SAA proteins in both species). These recombinant adenoviruses were injected intravenously into wild-type and human apoA-I transgenic mice and the effects of SAA expression on HDL cholesterol and apoA-I were compared with mice injected with a control adenovirus. Plasma levels of SAA were comparable to those seen in the acute phase response in mice and humans. However, despite high plasma levels of murine or human SAA, no significant changes in HDL cholesterol or apoA-I levels were observed. SAA was found associated with HDL but did not specifically alter the cholesterol or human apoA-I distribution among lipoproteins. In summary, high plasma levels of SAA in the absence of a generalized acute phase response did not result in reduction of HDL cholesterol or apoA-I in mice, suggesting that there are components of the acute phase response other than SAA expression that may directly influence HDL metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号