首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Actinoplanic acids A and B are macrocyclic polycarboxylic acids that are potent reversible inhibitors of farnesyl-protein transferase. Actinoplanic acids A and B were isolated from Actinoplanes sp. MA 7066 while actinoplanic acid B was isolated from both MA 7066 and Streptomyces sp. MA 7099. Actinoplanic acids A and B are competitive with respect to farnesyl diphosphate and are selective inhibitors of farnesyl-protein transferase because they do not inhibit geranylgeranyl-protein transferase type 1 or squalene synthase. MA 7066 is believed to be a novel species of actinomycetes while MA 7099 is believed to be a novel strain of Streptomyces violaceusniger on the basis of morphological, biochemical and chemotaxonomic characteristics as well as its production of actinoplanic acids.  相似文献   

2.
Chaetomellic acids are a class of alkyl dicarboxylic acids that were isolated from Chaetomella acutiseta. They are potent and highly specific farnesyl-pyrophosphate (FPP) mimic inhibitors of Ras farnesyl-protein transferase. We have previously described the first biogenetic type aldol condensation-based total synthesis of chaetomellic acid A. Modification of the later steps of that synthesis resulted in the efficient syntheses of chaetomellic acids A and B in three steps with 75-80% overall yield. In this report, details of the original total syntheses of chaetomellic acids A, B and C, the new syntheses of acids A and B and structure-activity relationship of these compounds against various prenyl transferases including human and yeast FPTase and bovine and yeast GGPTase I are described. Chaetomellic acids are differentially active against human and yeast FPTase. Chaetomellic acid A inhibited human and yeast FPTase activity with IC50 values of 55 nM and 225 microM, respectively. In contrast, chaetomellic acid C showed only a 10-fold differential in inhibitory activities against human versus yeast enzymes. In keeping with molecular modeling-based predictions, the compounds with shorter alkyl side chains (C-8) were completely inactive against FPTase.  相似文献   

3.
Rubber transferase, a cis-prenyltransferase, catalyzes the addition of thousands of isopentenyl diphosphate (IPP) molecules to an allylic diphosphate initiator, such as farnesyl diphosphate (FPP, 1), in the presence of a divalent metal cofactor. In an effort to characterize the catalytic site of rubber transferase, the effects of two types of protein farnesyltransferase inhibitors, several chaetomellic acid A analogs (2, 4-7) and alpha-hydroxyfarnesylphosphonic acid (3), on the ability of rubber transferase to add IPP to the allylic diphosphate initiator were determined. Both types of compounds inhibited the activity of rubber transferases from Hevea brasiliensis and Parthenium argentatum, but there were species-specific differences in the inhibition of rubber transferases by these compounds. Several shorter analogs of chaetomellic acid A did not inhibit rubber transferase activity, even though the analogs contained chemical features that are present in an elongating rubber molecule. These results indicate that the initiator-binding site in rubber transferase shares similar features to FPP binding sites in other enzymes.  相似文献   

4.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

5.
A novel diphosphate mimic, the 2,3,6-trifluoro-5-hydroxy-4-nitrophenoxy group (1), has been employed as the template in the solid-phase synthesis of novel farnesyl transferase inhibitors using the Mitsunobu reaction. The most potent inhibitor (farnesyloxy-5-hydroxy-2,3,6-trifluoro-4-nitrobenzene) displayed an IC50 of 6.3 microM versus farnesyl transferase.  相似文献   

6.
A series of 2-arylindole-3-acetamide farnesyl protein transferase inhibitors has been identified. The compounds inhibit the enzyme in a farnesyl pyrophosphate-competitive manner and are selective for farnesyl protein transferase over the related enzyme geranylgeranyltransferase-I. A representative member of this series of inhibitors demonstrates equal effectiveness against HDJ-2 and K-Ras farnesylation in a cell-based assay when geranylgeranylation is suppressed.  相似文献   

7.
In order to investigate the substrate binding feature of undecaprenyl diphosphate synthase from Micrococcus luteus B-P 26 with respect to farnesyl diphosphate and a reaction intermediate, (Z,E,E)-geranylgeranyl diphosphate, we examined the reactivity of artificial substrate analogs, 3-desmethyl farnesyl diphosphate and 3-desmethyl Z-geranylgeranyl diphosphate, which lack the methyl group at the 3-position of farnesyl diphosphate and Z-geranylgeranyl diphosphate, respectively. Undecaprenyl diphosphate synthase did not accept either of the 3-desmethyl analogs as the allylic substrate, indicating that the methyl group at the 3-position of the allylic substrate is important in the undecaprenyl diphosphate synthase reaction. These analogs showed different inhibition patterns in the cis-prenyl chain elongation reaction with respect to the reactions of farnesyl diphosphate and Z-geranylgeranyl diphosphate as allylic substrate. These results suggest that the binding site for the natural substrate farnesyl diphosphate and those for the intermediate allylic diphosphate, which contains the cis-prenyl unit, are different during the cis-prenyl chain elongation reaction.  相似文献   

8.
A series of substituents was installed at the 3 position of farnesyl diphosphate through a copper-cyanide mediated coupling of a vinyl triflate with various Grignard reagents. These novel FPP mimetics were then evaluated as inhibitors of or substrates for mammalian protein farnesyl transferase. The IC50 values for these compounds range from 18 to 10,100 nm, with the 3-isopropenyl analogue being one of the most potent FPP-mimetic mFTase inhibitors yet synthesized.  相似文献   

9.
Phosphonoacetamido(oxy) groups have proven to be good mimics of the diphosphate portion in geranylgeranyl protein transferase I (GGTase I) inhibitors. The introduction of small alkyl groups (Me, Et) into the diphosphate mimic moiety caused a further decrease in collateral farnesyl protein transferase (FTase) inhibitory activity, thereby improving GGTase I over FTase selectivity.  相似文献   

10.
Abstract

A group of prenyltransferases produce linear lipids by catalyzing consecutive condensation reactions of farnesyl diphosphate (FPP) with specific numbers of isopentenyl diphosphate (IPP), a common building block of isoprenoid compounds. Depending on the stereochemistry of the double bonds formed during IPP condensation, these prenyltransferases are categorized as cis- and trans-types. Undecaprenyl diphosphate synthase (UPPS) that catalyzes chain elongation of FPP by consecutive condensation reactions with eight IPP, to form C55 lipid carrier for bacterial cell wall biosynthesis, serves as a model for understanding cis-prenyltransferases. In this review, the current knowledge in UPPS kinetics, mechanisms, structures, and inhibitors is summarized.  相似文献   

11.
12.
Steady-state kinetic mechanism of Ras farnesyl:protein transferase.   总被引:7,自引:0,他引:7  
The steady-state kinetic mechanism of bovine brain farnesyl:protein transferase (FPTase) has been determined using a series of initial velocity studies, including both dead-end substrate and product inhibitor experiments. Reciprocal plots of the initial velocity data intersected on the 1/[s] axis, indicating that a ternary complex forms (sequential mechanism) and suggesting that the binding of one substrate does not affect the binding of the other. The order of substrate addition was probed by determining the patterns of dead-end substrate and product inhibition. Two nonhydrolyzable analogues of farnesyl diphosphate, (alpha-hydroxyfarnesyl)phosphonic acid (1) and [[(farnesylmethyl)hydroxyphosphinyl]methyl]phosphonic acid (2), were both shown to be competitive inhibitors of farnesyl diphosphate and noncompetitive inhibitors of Ras-CVLS. Four nonsubstrate tetrapeptides, CV[D-L]S, CVLS-NH2, N-acetyl-L-penicillamine-VIM, and CIFM, were all shown to be noncompetitive inhibitors of farnesyl diphosphate and competitive inhibitors of Ras-CVLS. These data are consistent with random order of substrate addition. Product inhibition patterns corroborated the results found with the dead-end substrate inhibitors. We conclude that bovine brain FPTase proceeds through a random order sequential mechanism. Determination of steady-state parameters for several physiological Ras-CaaX variants showed that amino acid changes affected the values of KM, but not those of kcat, suggesting that the catalytic efficiencies (kcat/KM) of Ras-CaaX substrates depend largely upon their relative binding affinity for FPTase.  相似文献   

13.
14.
15.
Three isoprenoid diphosphate analogues of farnesyl diphosphate (FPP) where the diphosphate has been replaced by methylene diphosphonate and the negative charges masked by frangible pivaloyloxymethyl (POM) esters were prepared. Farnesyl methylenediphosphonate is a sub-micromolar substrate for protein farnesyl transferase. The tripivaloyloxymethyl esters of isoprenoid methylenediphosphonate have significantly increased lipophilicity and may act as important farnesyl diphosphate prodrugs.  相似文献   

16.
Benzimidazole carboxyphosphonates and bisphosphonates have been prepared and evaluated for their activity as inhibitors of protein prenylation or isoprenoid biosynthesis. The nature of the phosphonate head group was found to dictate enzyme specificity. The lead carboxyphosphonate inhibits geranylgeranyl transferase II while its corresponding bisphosphonate analogue potently inhibits farnesyl diphosphate synthase. The most active inhibitors effectively disrupted protein prenylation in human multiple myeloma cells.  相似文献   

17.
Farnesyl diphosphate synthase (FPPS) catalyzes the consecutive condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate to form farnesyl diphosphate (FPP). In insects, FPP is used for the synthesis of ubiquinones, dolicols, protein prenyl groups, and juvenile hormone. A full‐length cDNA of FPPS was cloned from the cotton boll weevil, Anthonomus grandis (AgFPPS). AgFPPS cDNA consists of 1,835 nucleotides and encodes a protein of 438 amino acids. The deduced amino acid sequence has high similarity to previously isolated insect FPPSs and other known FPPSs. Recombinant AgFPPS expressed in E. coli converted labeled isopentenyl diphosphate in the presence of dimethylallyl diphosphate to FPP. Southern blot analysis indicated the presence of a single copy gene. Using molecular modeling, the three‐dimensional structure of coleopteran FPPS was determined and compared to the X‐ray crystal structure of avian FPPS. The α‐helical fold is conserved in AgFPPS and the size of the active site cavity is consistent with the enzyme being a FPPS. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Geminal bisphosphonates display varied biological activity depending on the nature of the substituents on the central carbon atom. For example, the nitrogenous bisphosphonates zoledronate and risedronate inhibit the enzyme farnesyl diphosphate synthase while digeranyl bisphosphonate has been shown to inhibit the enzyme geranylgeranyl diphosphate synthase. We now have synthesized isoprenoid bisphosphonates where an aromatic ring has been used to replace one of the isoprenoid olefins in an isoprenoid bisphosphonate and investigated the ability of these new compounds to impair protein geranylgeranylation within cells. Several of these new compounds are potent inhibitors of the enzyme geranylgeranyl diphosphate synthase.  相似文献   

19.
Limonene and its metabolite perillyl alcohol are naturally-occurring isoprenoids that block the growth of cancer cells both in vitro and in vivo. This cytostatic effect appears to be due, at least in part, to the fact that these compounds are weak yet selective and non-toxic inhibitors of protein prenylation. Protein-farnesyl transferase (FTase), the enzyme responsible for protein farnesylation, has become a key target for the rational design of cancer chemotherapeutic agents. Therefore, several alpha-hydroxyphosphonate derivatives of limonene were designed and synthesized as potentially more potent FTase inhibitors. A noteworthy feature of the synthesis was the use of trimethylsilyl triflate as a mild, neutral deprotection method for the preparation of sensitive phosphonates from the corresponding tert-butyl phosphonate esters. Evaluation of these compounds demonstrates that they are exceptionally poor FTase inhibitors in vitro (IC50 > or = 3 mM) and they have no effect on protein farnesylation in cells. In contrast, farnesyl phosphonyl(methyl)phosphinate, a diphosphate-modified derivative of the natural substrate farnesyl diphosphate, is a very potent FTase inhibitor in vitro (Ki=23 nM).  相似文献   

20.
Nitrogenous bisphosphonates are used clinically to reduce bone resorption associated with osteoporosis or metastatic bone disease, and are recognized as inhibitors of farnesyl diphosphate synthase. Inhibition of this enzyme decreases cellular levels of both farnesyl diphosphate and geranylgeranyl diphosphate which results in a variety of downstream biological effects including inhibition of protein geranylgeranylation. Our lab recently has prepared several isoprenoid bisphosphonates that inhibit protein geranylgeranylation and showed that one selectively inhibits geranylgeranyl diphosphate synthase. This results in depletion of intracellular geranylgeranyl diphosphate and impacts protein geranylgeranylation but does not affect protein farnesylation. To clarify the structural features of isoprenoid bisphosphonates that account for their geranylgeranyl diphosphate synthase inhibition, we have prepared a new group of isoprenoid bisphosphonates. The complete set of compounds has been tested for in vitro inhibition of human recombinant geranylgeranyl diphosphate synthase and cellular inhibition of protein geranylgeranylation. These results show some surprising relationships between in vitro and cellular activity, and will guide development of clinical agents directed at geranylgeranyl diphosphate synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号