首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
应用热平衡法测定玉米/大豆间作群体内作物的蒸腾量   总被引:2,自引:0,他引:2  
通过田间试验采用基于热平衡法的茎流计测定玉米/大豆条带间作群体内作物的蒸腾规律.结果表明:间作群体内,玉米和大豆植株的茎流速率在晴天呈单峰曲线,在阴天则呈多峰曲线.植株的茎流受多个环境因子的影响,其中太阳辐射是影响植株茎流最主要的气象因子.玉米和大豆的单株日茎流量与多个气象因子间存在较好的相关关系,达到极显著水平.茎流观测期内(2008年6月1-30日),间作群体内玉米植株的日均蒸腾量(1.44 mm·d-1)为大豆(0.79 mm·d-1)的1.8倍,玉米和大豆植株的蒸腾量分别占间作群体总蒸腾量的64%和36%.考虑到作物的茎直径和叶面积的空间变异,安装一定数量的茎流探头对于准确测定植株茎流是十分必要的.  相似文献   

2.
玉米/大豆间作条件下的作物根系生长及水分吸收   总被引:11,自引:0,他引:11  
通过田间试验研究了玉米/大豆条带间作群体的根系分布及土壤水分吸收规律.结果表明:水分充足条件下,土壤剖面内玉米和大豆根系的分布模式近似于三角形;玉米根系水平分布范围较大,侧向伸展长度约为58 cm,16~22 cm土层的玉米根系侧向伸展最远,玉米根系不仅分布于间作条带行间,而且生长到大豆条带的行间;大豆根系水平分布于相对有限的区域内,侧向伸展长度约为26 cm.作物根质量密度随着距作物行(玉米或大豆)距离的增加而减少,玉米行和边行大豆根质量密度的90%分布于0~30 cm土层.距玉米行10 cm处玉米的根质量密度高于大豆,距玉米行20 cm处大豆的根质量密度大于玉米,两种作物根质量密度的85%都分布于0~30 cm土层内.间作条带内水分变化主要集中在0~30 cm土层,水分变化量依次为:玉米区域>大豆区域>条带行间.表明在水分充足条件下,间作作物优先在自己的区域吸水,根系混合区吸水滞后发生.  相似文献   

3.
不同磷水平下玉米-大豆间作系统根系形态变化   总被引:1,自引:0,他引:1  
本研究通过盆栽试验,探讨不同磷水平(0、50、100 mg P2O5·kg-1,分别用P0、P50、P100表示)下玉米与大豆间作系统根系形态的变化及其与磷吸收的关系,以明确玉米-大豆间作系统促进磷吸收的作用机制。结果表明: 不同磷水平下,间作显著改变了玉米和大豆的根系形态参数,提高了大豆根冠比。与单作模式相比,间作使玉米和大豆的根长、根表面积、根体积、根系干重分别显著增加25.6%、22.0%、39.2%、34.3%和28.1%、29.7%、37.3%、62.3%,而平均根直径分别显著降低15.2%和11.7%。不同磷水平下,磷素吸收当量比(LERP)>1,玉米-大豆间作具有明显的磷吸收优势,且LERP不受磷水平调控。间作诱导根系形态改变与磷吸收增加密切相关,其中玉米根系表面积增大、大豆根系长度增加是驱动玉米-大豆间作系统磷高效吸收的主要机制。根据回归方程,玉米根表面积和大豆根系长度增大10%,磷吸收量提高5%~10%。因此,与中等施磷水平(P100)下的单作相比,玉米-大豆间作条件下磷肥减施1/2(P50)并未降低玉米的磷吸收量。综上,玉米-大豆间作体系在减施磷肥条件下具有维持作物磷吸收的潜力。  相似文献   

4.
通过顶置光源植物生长室控制380和760 μmol·mol-1 2个CO2浓度水平,研究了磷缺乏与正常供磷条件下,CO2浓度升高对玉米/大豆间作、玉米单作和大豆单作3种种植模式下作物株高、茎粗、叶面积及干物质积累的影响.结果表明:(1)CO2浓度升高能显著增加单/间作玉米、大豆的株高、茎粗、叶面积、根干重、地上部干重及总干重.(2)CO2浓度升高对供磷水平下单、间作玉米大豆的株高、茎粗、叶面积及干物质积累量增加的正效应均大于缺磷处理.(3)两种CO2浓度下,间作大豆与单作大豆生长差异不显著,而间作玉米较单作玉米有明显的生长优势,且供磷和CO2浓度的升高均能够促进这种优势.  相似文献   

5.
通过田间试验研究了不同水氮处理对玉米-大豆间作群体的光能截获、竞争与利用的影响。试验设置充分供水和水分亏缺两种水分处理以及施氮(亩施纯氮7.5 kg)和不施氮两种氮肥处理。结果表明,在生育中后期,同一氮肥处理条件下,充分供水处理间作作物的光能截获率显著高于水分亏缺处理;相同水分条件下,施氮处理间作大豆的光能截获率略高于不施氮处理,但未达到显著水平,而施氮处理间作玉米的光能截获率则显著高于不施氮处理。从播后第64天到成熟,同一氮肥处理条件下,充分供水提高了间作玉米的光能竞争比,但却降低了间作大豆的光能竞争比。从播后第73天到成熟,相同水分条件下,施氮处理间作玉米的光能竞争比显著高于不施氮处理,而大豆的光能竞争比在两个氮肥处理间则没有显著差异。充分供水条件下,施氮处理间作玉米的光能利用效率(LUE)为3.87 g/MJ,略高于不施氮处理(3.81 g/MJ);水分亏缺条件下,施氮处理间作玉米的LUE(3.86 g/MJ)比不施氮处理(3.72 g/MJ)高3.6%。充分供水条件下,施氮处理间作大豆的LUE(1.62 g/MJ)比不施氮处理(1.57 g/MJ)高3.2%;水分亏缺条件下,施氮处理间作大豆的LUE为1.55 g/MJ,与不施氮处理(1.54 g/MJ)基本相同,表明与氮肥处理相比,水分状况对大豆LUE的影响更为明显。  相似文献   

6.
任媛媛  王志梁  王小林  张岁岐 《生态学报》2015,35(12):4168-4177
利用不同玉米品种(郑单958和豫玉22)和大豆品种(中黄24和中黄13)在单作和两种(2∶2和2∶4)间作方式下,研究品种、间作方式对间作系统产量和经济效益的影响,探讨其潜在的作用过程和机制,以期为旱区农业高产高效服务。实验结果表明:(1)两种间作方式的土地当量比(LER),相对拥挤系数(K)都高于单作,表明玉米、大豆在两种间作方式下较单作具有显著的间作优势,玉米间作相比单作增产显著。K、实际产量损失(AYL)、侵占力(A)和竞争比率(CR)的变化规律均表明在间作栽培条件下,玉米相对于大豆为竞争优势物种;郑单958相对于豫玉22,中黄24相对于中黄13均占有一定竞争优势。郑单958与中黄24以2∶4比例间作的间作优势(IA)及货币优势指数(MAI)值最高。(2)相比单作,间作种植模式下玉米的水分利用效率明显增加,而且玉米∶大豆以2∶4间作的水分利用效率显著高于2∶2。郑单958与中黄24在2∶4间作方式下的产量和经济效益都最高,适合在当地应用和推广。  相似文献   

7.
遮荫对南方红豆杉光合特性及生活史型影响   总被引:6,自引:4,他引:2  
对浙江省富阳市种植的5年生南方红豆杉,89%遮荫的条件下生长的南方红豆杉与46.4%遮荫及自然光条件诱导50天的南方红豆杉的光合特性、光合色素及其生活史型的研究。结果表明:89%遮荫、46.4%遮荫和自然光的光补偿点分别为18.88,30.52和65.34 μmol·m-2·s-1,光饱和点分别为287.01,258.25和358.92 μmol·m-2·s-1,遮荫可以降低南方红豆杉的光补偿点和光饱和点,从而能够更好地利用弱光,同时提高光合速率,增强了南方红豆杉的光合能力,其中以89%遮荫的变化最明显。随着遮荫程度的增大,南方红豆杉叶片的叶绿素a、叶绿素b及类胡萝卜素等光合色素的含量均增大,叶绿素a与叶绿素b含量的比值减小,说明遮荫可以增加植物对光能的利用,尤其是增加了对蓝紫光的利用,提高了光合效能。研究还发现遮荫对南方红豆杉的生活史型有一定的影响,89%遮荫、46.4%和自然光的生活史型分别为V0.836C0.164,V0.625C0.375和V0.772C0.228,以89%遮荫的营养生长最为旺盛。因此,89%遮荫是这三种光照条件中南方红豆杉营养生长的最适条件。  相似文献   

8.
不同光环境对红松幼苗光合生理特征的影响   总被引:3,自引:0,他引:3  
应用Li-6400P便携式光合测定系统于生长季(8月)测定了4种模拟光环境(100%、60%、30%和15%自然光强,分别记为FI、II、LI和WI)和3个实际光环境(林窗、林下和林缘,分别记为G、U和E)下3个苗龄红松(Pinus koraiensis)针叶气体交换参数和净光合速率(Pn)的日变化,以及单位叶面积叶绿素(Chl)含量和比叶质量(LMA)的变化。结果表明:3年和5年生红松在II和LI处理间的Pn基本一致,且均高于FI的Pn;7年生红松在FI处理下的Pn高于其他处理的Pn,各处理的Pn峰值均出现在13:00。3年和5年生红松在LI处理下的最大光合速率(Amax)和暗呼吸速率(Rd)均高于全光FI处理。随光强降低,LMA呈下降趋势,说明红松通过改变LMA的方式适应光环境的变化。3年和5年生红松II处理与G处理间的光合生理指标差异不显著(P>0.05),LI和WI处理与E处理间同样如此,说明光环境模拟很好地反映了实际的光环境。通过对红松针叶生理生态指标的可塑性分析,得出3种不同苗龄红松可塑性的大小顺序为3年>5年>7年。表明随树龄增大,红松的需光性增加;3年和5年生红松在全光30%~60%条件下生长较好,7年生红松则是在全光下生长最好。  相似文献   

9.
蒙古栎和紫椴幼苗对光环境转变的光合作用响应   总被引:2,自引:1,他引:1  
比较研究了从温室5%光强转到10%、30%和100%光强处理下,蒙古栎(Quercus mongolica)和紫椴(Tilia amurensis)幼苗的光合能力和叶绿素荧光的响应,揭示了两个树种对光环境变化的不同适应情况及其光保护机制。结果表明,光强转换后两种幼苗都发生了严重光抑制,蒙古栎幼苗的最大光化学效率(Fv/Fm)在光强转变后第3天降到最低(0.52),紫椴幼苗在光强转变后第1天就降到了最低(0.67),蒙古栎降低幅度明显高于紫椴。之后随着光适应时间的延长逐渐恢复到原有水平,说明短时期的光抑制没有对两种幼苗的光合机构造成光损伤;从不同光照条件来看,无论是最大净光合速率(Pmax),还是实际光化学效率(ФPSⅡ),2种幼苗均为30%光强下的值高于10%和100%光强,说明过低或过高的光强都不利于幼苗的生长发育,只有适当的中光才利于幼苗的生长发育;与30%光强相比,蒙古栎幼苗100%光强下PmaxFv/FmФPSⅡ、NPQ的变化幅度远大于紫椴幼苗,表明高光强对蒙古栎幼苗的影响要大于紫椴;100%光强下,2种幼苗均通过大量增加非光化学淬灭(NPQ)、类胡萝卜素和叶绿素之比(Car/Chl)耗散过剩光能,降低单位鲜重叶绿素含量(Chl)以减少光能吸收,避免了光合机构光破坏。  相似文献   

10.
玉米-大豆间作和施氮对玉米产量及农艺性状的影响   总被引:9,自引:0,他引:9  
为研究玉米-大豆间作模式和施氮水平对玉米产量、主要农艺性状及生长动态的影响,进行2个种植模式(玉米单作和玉米-大豆间作)和2个施氮水平(0 kg/hm2,150 kg/hm2)的双因素随机区组试验,以期揭示施氮和间作对玉米产量的影响规律,为提高玉米-大豆间作系统产量提供一定的理论依据。研究结果表明:(1)与不施氮相比,施氮显著增加了春秋两季间作玉米产量,分别达到23.81%和40.99%。施氮处理下的间作玉米地上部生物量较不施氮提高了29.91%,单作模式下显著提高了40.34%,两者差异均达到显著水平。(2)与不施氮相比,施氮150 kg/hm2条件下春玉米单作和间作模式百粒重分别提高了18.92%和19.23%,秋玉米单作和间作模式百粒重分别提高了31.03%和32.75%,差异均达到显著水平。与不施氮相比,施氮150 kg/hm2条件下,单作和间作模式均显著提高秋玉米穗长。与不施氮相比,施氮150 kg/hm2条件下,单作秋玉米的穗粗提高了18.67%,差异显著。(3)施氮和间作均能促进玉米干物质累积、提高株高和叶绿素(SPAD值),且表现为施氮效果高于间作效果。总体来看,种植模式和施氮水平对玉米产量、主要农艺性状和生长动态均有一定影响,且施氮效果优于间作效果。由于土壤具有一定的供氮能力,而间作豆科能为玉米供给一定量的氮素,故对于春玉米而言,施氮效果仅在百粒重中表现,随着土壤原有氮素被玉米吸收利用减少后,供氮能力下降,在秋玉米中施氮效果显著提高。  相似文献   

11.
Maize/soybean strip intercropping is a commonly used system throughout China with high crop yields at reduced nutrient input compared to sole maize. Maize is the taller crop, and due to its dominance in light capture over soybean in the intercrop, maize is expected to outperform maize in sole cropping. Conversely, soybean is the subordinate crop and intercropped soybean plants are expected to perform worse than sole soybean. Crop plants show plastic responses in plant architecture to their growing conditions to forage for light and avoid shading. There is little knowledge on plant architectural responses to growing conditions in simultaneous (non-relay) intercropping and their relationship to species yields. A two-year field experiment with two simultaneous maize/soybean intercropping systems with narrow and wide strips was conducted to characterise architectural traits of maize and soybean plants grown as intercrop and sole crops. Intercropped maize plants, especially those in border rows, had substantially greater leaf area, biomass and yield than maize plants in sole crops. Intercropped soybean plants, especially those in border rows, had lower leaf area, biomass and yield than sole soybean plants. Overall intercrop performance was similar to that of sole crops, with the land equivalent ratio (LER) being only slightly greater than one (1.03–1.08). Soybean displayed typical shade avoidance responses in the intercrop, such as greater internode elongation and changes in specific leaf area, but these responses could not overcome the consequences of the competition with the taller maize plants. Therefore, in contrast to relay intercrop systems, in the studied simultaneous maize/soybean system, plastic responses did not contribute to practically relevant increases in resource capture and yield at whole system (i.e., intercrop) level.  相似文献   

12.
大豆幼苗对套作玉米遮荫环境的光合生理生态响应   总被引:4,自引:0,他引:4  
苏本营  宋艳霞  陈圣宾  杨文钰 《生态学报》2015,35(10):3298-3308
以2个耐荫性不同的大豆品种为材料,田间试验设置大豆单作和玉米-大豆套作2个种植模式处理,研究不同耐荫性大豆品种的幼苗光合生理生态特性对套作玉米遮荫环境的响应。结果表明:1)玉米-大豆套作模式中,玉米遮荫显著降低大豆冠层的光合有效辐射,导致大豆幼苗光合速率、气孔导度、蒸腾速率显著下降(P0.05),分别达37.9%、54.2%和42.4%,但品种间无显著差异;而胞间二氧化碳浓度和Fv/Fm无显著变化,且光合速率的下降与气孔导度存在显著相关关系,光合速率下降主要是由气孔限制和CO2同化过程中能量不足所致;2)玉米遮荫显著降低大豆幼苗叶面积指数、叶片碳含量、叶片和根系干重及总生物量,且品种间差异显著,相关性分析显示,叶面积指数下降是导致生物量减少的主要原因;3)玉米遮荫环境中,大豆幼苗的叶片叶绿素和氮素含量提高以增强光捕获能力,但它们并不能补偿因光截获面积降低而引起的光截获量下降。  相似文献   

13.
遮荫处理对梅叶冬青叶片形态、光合特性和生长的影响   总被引:1,自引:0,他引:1  
为了解遮荫环境对梅叶冬青(Ilex asprella)生长和光合特性的影响,采用遮荫网的方法模拟85%、56%和全光照等3种光照环境,研究了遮荫对其生长、光合参数以及生物量等的影响。结果表明,经一年遮荫处理后,梅叶冬青的叶绿素a、b和叶绿素总量都随着遮荫强度的增加而显著增高,胡萝卜素含量则显著降低。与对照相比,56%遮荫处理显著提高梅叶冬青的最大净光合速率和光饱和点,分别提高了17.6%和25.2%,但是85%遮阴处理则显著降低最大净光合速率和光饱和点,分别降低了18.2%和24.1%,两种遮荫处理均显著降低了光补偿点。叶长、叶宽、比叶面积、单片叶面积和叶片含水量均随着遮荫强度的增加而显著增加,而叶片厚度则显著减小。遮荫处理明显抑制整株生物量增长,减小根冠比,但是株高、冠幅和径向生长随遮荫处理时间不同而有所变异。因此,梅叶冬青有耐荫偏阳的特性,在林下种植时需及时调控乔冠层的透光率,一般应大于44%。  相似文献   

14.
Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials.  相似文献   

15.
Molecular analysis of natural leaf senescence in Arabidopsis thaliana   总被引:27,自引:0,他引:27  
Using artificial canopies, several authors have shown that horizontally propagated and overall propagated radiation beneath the canopy differ substantially in spectral distribution in the red (R) and far red (FR) wavelengths. Given the lack of information about light quality under real crop canopies, the R:FR ratio of vertical and horizontal radiation beneath field-grown maize, soybean and wheat was monitored until leaf area index (LAI) reached 4, 2.5 and 6.9, respectively.
A Li-Cor 1800 spectroradiometer with a remote cosine receptor fitted with a quartz fibre-optic light-guide was used. To isolate radiation coming from a given direction, a black coated tube was fitted to the cosine receptor. The viewing angle was 15°. In open conditions, the values of R:FR from the upper hemisphere were between 1.07 and 1.20. For vertically and horizontally-propagated light, average values were 1.22 and 0.75 respectively.
Beneath the canopy, both R:FR and photosynthetic photon flux density (PPFD) from the entire upper hemisphere decreased in relation to LAI and crop height. R:FR of the horizontal component were found to be generally much lower than the vertical, which decreased significantly only in the later measurements.
The lowest R:FR values were recorded under wheat and soybean canopies. Even the very low LAIs present at early development stages were enough to cause a sharp decrease of R:FR in the horizontal fluxes. Referring to the entire upper hemisphere, PPFD transmittance and R:FR as a percentage of the external references appeared well correlated.  相似文献   

16.
Intercropping, a traditional and worldwide cropping practice, has been considered as a paradigm of sustainable agriculture based on complementary mechanisms among different crop species. Soybean (Glycine max) is widely relay intercropped about 60 days before maize (Zea mays) harvest in Southwest China. However, shade caused by tall maize plants may be a limiting factor for soybean growth at a seedling stage. In field research, we studied the ecophysiological responses of two widely cultivated soybean varieties [Gongqiudou494-1 (GQD) and Gongxuan 1 (GX)] to maize shading in a relay intercropping system (RI) compared with monocropped soybean plants (M). Our results showed that soybean seedlings intercropped with maize exhibited significantly downregulated net photosynthetic rate (P N) (?38.3%), transpiration rate (?42.7%), and stomatal conductance (?55.4%) due to low available light. The insignificant changes in intercellular CO2 concentration and the maximum efficiency of PSII photochemistry suggested that the maize shading-induced depressions in P N were probably caused by the deficiency of energy for carbon assimilation. The significantly increased total chlorophyll (Chl) content (+27.4%) and Chl b content (+52.2%), with lowered Chl a/b ratios (?20.5%) indicated soybean plants adjusted their light-harvesting efficiency under maize shading condition. Biomass and leaf area index (LAI) of seedlings under RI decreased significantly (?78.7 and ?71%, respectively) in comparison with M. Correlation analysis indicated the relative reduction in biomass accumulation was caused by the decline in LAI rather than P N, it affected negatively the final yields of soybean (32.8%). Cultivar-specific responses to maize shading were observed in respects of LAI, biomass, and grain yield. It indicated that GX might be a better cultivar for relay intercropping with maize in Southwest China.  相似文献   

17.
Mixed cultivation of crops often results in increased production per unit land area, but the underlying mechanisms are poorly understood. Plants in intercrops grow differently from plants in single crops; however, no study has shown the association between plant plastic responses and the yield advantage. Here, we assessed the productivity of wheat–maize intercropping as compared to sole wheat and sole maize, and the associated differences in wheat shoot and leaf traits. In two field experiments, intercrop wheat and maize were both grown in alternating strips consisting of six rows of wheat and two rows of maize. The traits of wheat plants in border rows of the strips were compared to the traits of plants in the inner rows as well as those in sole wheat. Leaf development, chlorophyll concentration and azimuth, as well as the final leaf and ear sizes, tiller dynamics of wheat and yield components of both crops were determined. The relative densities of wheat and maize in the intercrop were 0.33 and 0.67, respectively, but the corresponding relative yields compared to the respective monocultures were 0.46 for wheat and 0.77 for maize. Compared to wheat plants in the inner rows of the intercrop strips as well as in the monoculture, border‐row wheat plants in the intercrop strips had (a) more tillers owing to increased tiller production and survival, and thus more ears, (b) larger top leaves on the main stem and tillers, (c) higher chlorophyll concentration in leaves, (d) greater number of kernels per ear and (e) smaller thousand‐grain weight. Grain yield per metre row length of border‐row wheat was 141% higher than the sole wheat, and was 176% higher than the inner‐row wheat. The results demonstrate the importance of plasticity in architectural traits for yield advantage in multispecies cropping systems.  相似文献   

18.
Increasing crop nitrogen use efficiency while also simultaneously decreasing nitrogen accumulation in the soil would be key steps in controlling nitrogen pollution from agricultural systems. Long-term field experiments were started in 2003 to study the effects of intercropping on crop N use and soil mineral N accumulation in wheat (Triticum aestivum L. cv 2014)/maize (Zea mays L. cv Shendan16), wheat/faba bean (Vicia faba L. cv Lincan No. 5) and maize/faba bean intercropping and monocropping systems. Monocropping was compared with two types of strip intercropping: continuous intercropping (two crops intercropped continuously on the same strips of land every year) and rotational intercropping (two crops grown adjacently and rotated to the other crop??s strip every year). Maize/faba bean intercropping had greater crop N uptake than did wheat/faba bean or wheat/maize. Wheat/maize accumulated more mineral N in the top 140 cm of the soil profile during the co-growth stage from maize emergence to maturity of wheat or faba bean. Continuously intercropped maize substantially decreased soil mineral N accumulation under wheat and faba bean rows (60?C100 cm soil depth) at maize harvest. Soil mineral N accumulation under wheat rows increased with rotational intercropping with faba bean. Rotational intercropping may potentially alleviate the adverse effects of wheat on N use by other crops and increase the nitrogen harvest index of wheat, maize and faba bean. Intercropping using species with different maturity dates may be more effective in increasing crop N use efficiency and decreasing soil mineral N accumulation.  相似文献   

19.
Zhang  Fusuo  Li  Long 《Plant and Soil》2003,248(1-2):305-312
This paper reviews recent research on the processes involved in the yield advantage in wheat (Triticum aestivum L.)/maize (Zea mays L.), wheat/soybean [Glycine max (L.) Merr.], faba bean (Vicia faba L.)/maize, peanut (Arachis hypogaea L.)/maize and water convolvulus (Ipomoea aquatica Forsk.)/maize intercropping. In wheat/maize and wheat/soybean intercropping systems, a significant yield increase of intercropped wheat over sole wheat was observed, which resulted from positive effects of the border row and inner rows of intercropped wheat. The border row effect was due to interspecific competition for nutrients as wheat had a higher competitive ability than either maize or soybean had. There was also compensatory growth, or a recovery process, of subordinate species such as maize and soybean, offsetting the impairment of early growth of the subordinate species. Finally, both dominant and subordinate species in intercropping obtain higher yields than that in corresponding sole wheat, maize or soybean. We summarized these processes as the `competition-recovery production principle'. We observed interspecific facilitation, where maize improves iron nutrition in intercropped peanut, faba bean enhances nitrogen and phosphorus uptake by intercropped maize, and chickpea facilitates P uptake by associated wheat from phytate-P. Furthermore, intercropping reduced the nitrate content in the soil profile as intercropping uses soil nutrients more efficiently than sole cropping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号