首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
M Hricovíni  R N Shah  J P Carver 《Biochemistry》1992,31(41):10018-10023
The effect of internal motions on proton relaxation data in oligosaccharides has been investigated experimentally. 1H steady-state and transient NOEs together with 13C T1's have been measured at two magnetic field strengths. The existence of internal motions leads to additional modulations of the dipolar interaction between proton pairs, thus producing a range of spectral density functions for these interactions. As a result, it is possible to show that protons relaxing through fixed distances have a different ratio of relaxation parameters, acquired at 500 and 300 MHz, compared to those relaxing through fluctuating distances. This approach has been used to unequivocally establish for two disaccharides the existence of internal motions on the time scale of the overall tumbling.  相似文献   

3.
J W Peng  G Wagner 《Biochemistry》1992,31(36):8571-8586
A new strategy is used for studying the internal motions of proteins based on measurements of NMR relaxation parameters. The strategy yields values of the so-called spectral density functions J(omega) for N-H bond vectors. The spectral density functions are related to the distribution of frequencies contained in the rotational (overall and internal) motions of these NH bond vectors. No a priori model assumptions about the dynamics are required in this approach. The method involves measurements of six relaxation parameters consisting of 15N longitudinal relaxation rates, transverse relaxation rates of in-phase and antiphase coherence, the relaxation rates of heteronuclear 1H-15N two-spin order, the heteronuclear 1H-15N nuclear Overhauser effects, and longitudinal relaxation rates of the amide protons. The values of the spectral density functions at the five frequencies 0, omega N, omega H + omega N, omega H, and omega H - omega N are determined from the relaxation parameters using analytical relations derived previously [Peng & Wagner (1992) J. Magn. Reson. 98, 308-332]. Here, the method is applied to characterize the backbone dynamics of the 15N-enriched proteinase inhibitor eglin c, a protein of 70 residues. The values for J(0) and J(omega N = 50 MHz) vary significantly with the amino acid sequence, whereas the spectral densities at higher frequencies, J(450 MHz), J(500 MHz), and J(550 MHz), are typically much smaller and show no significant variation with the sequence. The collective behavior of the J(omega) values indicate greater internal motion for the proteinase binding loop residues and the first eight N-terminal residues. The additional internal motion in these regions is in the rate range below 450 MHz. The values of J(omega) are also compared with root mean square deviations (rmsds) of backbone atoms as obtained in NMR structure determinations. Low values of J(0) and J(omega N) are correlated with high rmsds. Spectral densities at higher frequencies, J(450 MHz), J(500 MHz), and J(550 MHz), are small and show no correlation with rmsds. A comparison with the spectral density functions obtained by fitting the experimental data to the functional dependence of the Lipari and Szabo formalism [Lipari & Szabo (1982a) J. Am. Chem. Soc. 104, 4546-4559] is made.  相似文献   

4.
The villin headpiece subdomain (HP36) is a widely used system for protein-folding studies. Nuclear magnetic resonance cross-correlated relaxation rates arising from correlated fluctuations of two N-HN dipole-dipole interactions involving successive residues were measured at two temperatures at which HP36 is at least 99% folded. The experiment revealed the presence of motions slower than overall tumbling of the molecule. Based on the theoretical analysis of the spectral densities we show that the structural and dynamic contributions to the experimental cross-correlated relaxation rate can be separated under certain conditions. As a result, dynamic cross-correlated order parameters describing slow microsecond-to-millisecond motions of N-H bonds in neighboring residues can be introduced for any extent of correlations in the fluctuations of the two bond vectors. These dynamic cross-correlated order parameters have been extracted for HP36. The comparison of their values at two different temperatures indicates that when the temperature is raised, slow motions increase in amplitude. The increased amplitude of these fluctuations may reflect the presence of processes directly preceding the unfolding of the protein.  相似文献   

5.
Summary Spectral densities of the 15N amide in Escherichia coli ribonuclease HI, obtained from NMR relaxation experiments, were compared with those calculated using a molecular dynamics (MD) simulation. All calculations and comparisons assumed that the auto-correlation function describing the internal motions of the molecule was independent of the auto-correlation function associated with overall rotational diffusion. Comparisons were limited to those residues for which the auto-correlation function of internal motions rapidly relaxed and reached a steady state within 205 ps. The results show the importance of frequency components as well as amplitudes of internal motions in order to obtain a meaningful comparison of MD simulations with NMR data.  相似文献   

6.
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.  相似文献   

7.
Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition. Heteronuclear NMR relaxation is sensitive to motions in the relevant time scales and could provide valuable information on the dynamics of multi-domain proteins. However, the standard analysis based on the separation of global tumbling and fast local motions is no longer valid for multi-domain proteins undergoing internal motions involving complete domains and that take place on the same time scale than the overall motion.The complexity of the motions experienced even for the simplest two-domain proteins are difficult to capture with simple extensions of the classical Lipari-Szabo approach. Hydrodynamic effects are expected to dominate the motion of the individual globular domains, as well as that of the complete protein. Using Pin1 as a test case, we have simulated its motion at the microsecond time scale, at a reasonable computational expense, using Brownian Dynamic simulations on simplified models. The resulting trajectories provide insight on the interplay between global and inter-domain motion and can be analyzed using the recently published method of isotropic Reorientational Mode Dynamics which offer a way of calculating their contribution to heteronuclear relaxation rates. The analysis of trajectories computed with Pin1 models of different flexibility provides a general framework to understand the dynamics of multi-domain proteins and explains some of the observed features in the relaxation rate profile of free Pin1.  相似文献   

8.
9.
The internal motions of the backbone nitrogen atoms of the kringle 1 domain of human plasminogen (K1(Pg)) were examined in the absence and presence of the ligand, epsilon-aminocaproic acid. These dynamic properties were determined from (15)N NMR relaxation data in terms of the extended model-free parameters. The model of isotropic reorientation was found sufficient to account for overall molecular tumbling for both apo and EACA-bound K1(Pg). The global rotational correlation time (tau(m)) for apo-K1(Pg) was 5.87(+/-0.01) ns, while the tau(m) for ligand-bound K1(Pg) was 5.20(+/-0.01) ns, suggesting that perhaps some small degree of aggregation occurred in the apo form of the kringle module. Complexation of K1(Pg) with ligand mainly reduced those internal motions that occurred on a 100 ps to 5 ns time-scale. The magnitude of the chemical exchange was also attenuated upon ligand binding. These data are consistent with studies employing other approaches that suggest that the binding pocket is preformed in K1(Pg).  相似文献   

10.
Because the overall tumbling provides a major contribution to protein spectral densities measured in solution, the choice of a proper model for this motion is critical for accurate analysis of protein dynamics. Here we study the overall and backbone dynamics of the B3 domain of protein G using 15N relaxation measurements and show that the picture of local motions is markedly dependent on the model of overall tumbling. The main difference is in the interpretation of the elevated R 2 values in the -helix: the isotropic model results in conformational exchange throughout the entire helix, whereas no exchange is predicted by anisotropic models that place the longitudinal axis of diffusion tensor almost parallel to the helix axis. Due to small size (fast tumbling) of the protein, the T 1 values have low sensitivity to NH bond orientation. The diffusion tensor derived from orientation dependence of R 2/R 1 is anisotropic (D par/D perp=1.4), with a small rhombic component. In order to distinguish the correct picture of motion, we apply model-independent methods that are sensitive to conformational exchange and do not require knowledge of protein structure or assumptions about its dynamics. A comparison of the CSA/dipolar cross-correlation rate constants with 15N relaxation rates and the estimation of R ex terms from relaxation data at 9.4 and 14.1 T indicate no conformational exchange in the helix, in support of the anisotropic models. The experimentally derived diffusion tensor is in excellent agreement with theoretical predictions from hydrodynamic calculations; a detailed comparison with various hydrodynamic models revealed optimal parameters for hydrodynamic calculations.  相似文献   

11.
NMR relaxation experiments of isotopically labeled proteins provide a wealth of information on reorientational global and local dynamics on nanosecond and subnanosecond timescales for folded and nonfolded proteins in solution. Recent methodological advances in the interpretation of relaxation data have led to a better understanding of the overall tumbling behavior, the separability of internal and overall motions, and the presence of correlated dynamics between different nuclear sites, as well as to new insights into the relationship between reorientational dynamics and primary and tertiary protein structure. Some of the new methods are particularly useful when dealing with nonfolded protein states.  相似文献   

12.
13.
The backbone dynamics of the 28 residue 15N-labelled human atrial natriuretic peptide have been examined by 15N NMR methods. 15N R1, R2 and [1H]-15N NOE values were determined for the oxidised and reduced forms of the peptide (ANPox and ANPrd, respectively), and analysed using reduced spectral density mapping and an extended model-free approach. The two forms possessed correlation times for overall molecular motion of 4.7 ns and were highly flexible, with substantial contributions to relaxation processes from internal motions on picosecond to nanosecond time scales. Reduction of the Cys7-Cys23 disulphide bond to form ANPrd produced a very dynamic linear peptide with a mean overall order parameter of 0.2; the intramolecular cross-link in ANPox increased this to a mean value of 0.4. A simple model for segmental backbone motion accounted for the R2 values of both species using only two variable parameters, indicating that relaxation is dominated by interactions with sites <7 residues distant in the covalent network and that changes in the conformation of the disulphide bond lead to significant chemical exchange broadening in ANPox. The contributions of backbone dynamics to configurational entropy were determined and accounted for the different receptor binding affinities of cyclised and linear natriuretic peptides.  相似文献   

14.
15.
A E Torda  R S Norton 《Biopolymers》1989,28(3):703-716
Spin-spin and spin-lattice 1H-nmr relaxation times of the sea anemone polypeptide anthopleurin-A were measured at frequencies of 200, 300, 400, and 500 MHz. Relaxation times were fitted iteratively by least squares regression to the isotropic tumbling model, Woessner's model for anisotropic motion, and Lipari and Szabo's "model-independent" model. Data for aromatic and aliphatic methine protons could not be fitted satisfactority using the isotropic model. Good fits were obtained, however, using the model-independent approach, indicating that high-frequency internal motions of the polypeptide backbone were significant. In addition, a range of tau c values from 2.2 to 3.2 ns was obtained for various methine protons, suggesting that overall rotational reorientation of the molecule was anisotropic. Methyl group relaxation data were fitted satisfactorily by Woessner's model. Some assessment has been made of the effect of experimental errors on the quality of fit to the data, as well as of the contribution of experimental values at certain frequencies to definition of the spectral density function.  相似文献   

16.
In this paper we make use of the graphical procedure previously described [Jin, D. et al. (1997) J. Am. Chem. Soc., 119, 6923–6924] to analyze NMR relaxation data using the Lipari-Szabo model-free formalism. The graphical approach is advantageous in that it allows the direct visualization of the experimental uncertainties in the motional parameter space. Some general rules describing the relationship between the precision of the relaxation measurements and the precision of the model-free parameters and how this relationship changes with the overall tumbling time (m) are summarized. The effect of the precision in the relaxation measurements on the detection of internal motions not close to the extreme narrowing limit is analyzed. We also show that multiple timescale internal motions may be obscured by experimental uncertainty, and that the collection of relaxation data at very high field strength can improve the ability to detect such deviations from the simple Lipari-Szabo model.  相似文献   

17.
The tetratricopeptide repeat (TPR) is a 34-residue helix-turn-helix motif that occurs as three or more tandem repeats in a wide variety of proteins. We have determined the repeat motions and backbone fluctuations of proteins containing two or three consensus TPR repeats (CTPR2 and CPTR3, respectively) using 15N NMR relaxation measurements. Rotational diffusion tensors calculated from these data for each repeat within each TPR protein indicate that there is a high degree of motional correlation between different repeats in the same protein. This is consistent with the prevailing view that repeat proteins, such as CTPR2 and CTPR3, behave as single cooperatively folded domains. The internal motions of backbone NH groups were determined using the Lipari-Szabo model-free formalism. For most residues, there was a clear separation between the influence of internal motion and the influence of global rotational tumbling on the observed magnetic relaxation. The local internal motions are highly restricted in most of the helical elements, with slightly greater flexibility in the linker elements. Comparisons between CTPR2 and CTPR3 indicate that an addition of a TPR repeat to the C-terminus (before the solvation helix) of CTPR2 slightly reduces the flexibility of the preceding helix.  相似文献   

18.
Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R 1 at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire β-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.  相似文献   

19.
Model-free analysis has been extensively used to extract information on motions in proteins over a wide range of timescales from NMR relaxation data. We present a detailed analysis of the effects of rotational anisotropy on the model-free analysis of a ternary complex for dihydrofolate reductase (DHFR). Our findings show that the small degree of anisotropy exhibited by DHFR (D||/D=1.18) introduces erroneous motional models, mostly exchange terms, to over 50% of the NH spins analyzed when isotropic tumbling is assumed. Moreover, there is a systematic change in S2, as large as 0.08 for some residues. The significant effects of anisotropic rotational diffusion on model-free motional parameters are in marked contrast to previous studies and are accentuated by lowering of the effective correlation time using isotropic tumbling methods. This is caused by the preponderance of NH vectors aligned perpendicular to the principal diffusion tensor axis and is readily detected because of the high quality of the relaxation data. A novel procedure, COPED (COmparison of Predicted and Experimental Diffusion tensors) is presented for distinguishing genuine motions from the effects of anisotropy by comparing experimental relaxation data and data predicted from hydrodynamic analyses. The procedure shows excellent agreement with the slow motions detected from the axially symmetric model-free analysis and represents an independent procedure for determining rotational diffusion and slow motions that can confirm or refute established procedures that rely on relaxation data. Our findings show that neglect of even small degrees of rotational diffusion anisotropy can introduce significant errors in model-free analysis when the data is of high quality. These errors can hinder our understanding of the role of internal motions in protein function.  相似文献   

20.
The popular model-free approach to analyze NMR relaxation measurements has been examined using artificial amide (15)N relaxation data sets generated from a 10 nanosecond molecular dynamics trajectory of a dihydrofolate reductase ternary complex in explicit water. With access to a detailed picture of the underlying internal motions, the efficacy of model-free analysis and impact of model selection protocols on the interpretation of NMR data can be studied. In the limit of uncorrelated global tumbling and internal motions, fitting the relaxation data to the model-free models can recover a significant amount of quantitative information on the internal dynamics. Despite a slight overestimation, the generalized order parameter is quite accurately determined. However, the model-free analysis appears to be insensitive to the presence of nanosecond time scale motions with relatively small magnitude. For such cases, the effective correlation time can be significantly underestimated. As a result, proteins appear to be more rigid than they really are. The model selection protocols have a major impact on the information one can reliably obtain. The commonly employed protocol based on step-up hypothesis testing has severe drawbacks of oversimplification and underfitting. The consequences are that the order parameter is more severely overestimated and the correlation time more severely underestimated. Instead, model selection based on Bayesian Information Criteria (BIC), recently introduced to the model-free analysis by d'Auvergne and Gooley (2003), provides a better balance between bias and variance. More appropriate models can be selected, leading to improved estimate of both the order parameter and correlation time. In addition, the computational cost is significantly reduced and subjective parameters such as the significance level are unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号