首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Senescence is a highly orchestrated developmental stage in the life cycle of plants. The onset of senescence is tightly controlled by signaling cascades that initiate changes in gene expression and the synthesis of new proteins. This complement of new proteins includes hydrolytic enzymes capable of executing catabolism of macromolecules, which in turn sets in motion disassembly of membrane molecular matrices, leading to loss of cell function and, ultimately, complete breakdown of cellular ultrastructure. A distinguishing feature of senescence that sets it apart from other types of programmed cell death is the recovery of carbon and nitrogen from the dying tissue and their translocation to growing parts of the plant such as developing seeds. For this to be accomplished, the initiation of senescence and its execution have to be meticulously regulated. For example, the initiation of membrane disassembly has to be intricately linked with the recruitment of nutrients because their ensuing translocation out of the senescing tissue requires functional membranes. Molecular mechanisms underlying this linkage and its integration with the catabolism of macromolecules in senescing tissues are addressed.  相似文献   

2.
We report here the cloning and characterization of a soybean receptor-like kinase (RLK) gene, designated GmSARK (Glycine max senescence-associated receptor-like kinase), which is involved in regulating leaf senescence. The conceptual protein product of GmSARK contains typical domains of LRR receptor-like kinases: a cytoplasmic domain with all the 11 kinase subdomains, a transmembrane domain and an extracelullar domain containing 9 Leucine-Rich Repeat (LRR) units that may act as a receptor. The expression of GmSARK in soybean leaves was up-regulated in all the three tested senescence systems: senescing cotyledons, dark-induced primary leaf senescence and the natural leaf senescence process after florescence. Furthermore, the RNA interference (RNAi)-mediated knocking-down of GmSARK dramatically retarded soybean leaf senescence. A more complex thylakoid membrane system, higher foliar level of chlorophyll content and a very remarkable delay of senescence-induced disintegration of chloroplast structure were observed in GmSARK-RNAi transgenic leaves. A homolog of maize lethal leaf-spot 1 gene, which has been suggested to encode a key enzyme catalyzing chlorophyll breakdown, was isolated and nominated Gmlls1. The expression level of Gmgtr1 gene, which encodes a key enzyme of chlorophyll synthesis, was also analyzed. It was found that Gmlls1 was up-regulated and Gmgtr1 was down-regulated during senescence in wild-type soybean leaves. However, both of the up-regulation of Gmlls1 and down-regulation of Gmgtr1 were retarded during senescence of GmSARK-RNAi transgenic leaves. In addition, over-expression of the GmSARK gene greatly accelerated the senescence progression of CaMV 35S:GmSARK transgenic plants. Taken together, these results strongly suggested the involvement of this LRR-RLK in regulation of soybean leaf senescence, maybe via regulating chloroplast development and chlorophyll accumulation. Multiple functions of GmSARK besides its regulation of leaf senescence were also discussed. Electronic Supplementary Material Supplementary material is available for this article at Rui Gan, Peng-Li Li and Yuan-Yuan Ma contributed equally to this work.  相似文献   

3.
4.
The change in the characteristics of the absorption spectrum of chloroplasts which were isolated from the mature and senescing primary wheat leaves, was examined at various wavelengths in which the photosynthetic pigments mostly absorb. Chlorophyll (Chl) a was observed to be relatively more sensitive to leaf senescence than Chl b and carotenoids. Furthermore, the various spectral in vivo forms of Chl a, did not degrade to a similar extent; the far red absorbing forms of Chl a including species that absorb maximally at 692 nm (Chl a-692), 700 nm (Chl a-700) and 708 nm (Chl a 708) were found to be extremely sensitive to senescence induced losses. Both attached and detached senscing primary wheat leaves exhibited nearly similar pattern in the loss of photosynthetic pigments which suggests that the loss in long wavelength absorbing forms of Chl a is a selective indicator of leaf senescence.  相似文献   

5.
Leaves of Eucommia ulmoides Oliv. harvested between April to November were examined for programmed cell death (PCD) during growth and senescence. Leaves developed in April, becoming fully expanded in late May, remaining unchanged until November when they started to dehisce. Falling leaves retained a green color. Our results showed that (1) mesophyll cells gradually reduced their nuclei from September to November, (2) positive TUNEL signals appeared on the nuclei from August, (3) ladder-like DNA fragmentation occurred in September and October, and (4) a 20-kDa Ca2+-dependent DNase appeared in these same months. In fallen leaves, intact mesophyll cell nuclei could not be detected, but a few cells around the vascular bundle had nuclei. Therefore, (1) programmed cell death (PCD) of leaf cells occurred in the leaves of E. ulmoides, (2) the progress of mesophyll cell PCD lasted for more than 2 months, and (3) PCD of leaf cells was asynchronous in natural senescing leaves. Electronic Publication  相似文献   

6.
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well‐defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.  相似文献   

7.
A. Ierna 《Photosynthetica》2007,45(4):568-575
Field experiments were conducted in Sicily (south Italy) during two seasons to characterize by chlorophyll (Chl) fluorescence four genotypes (Spunta, Sieglinde, Daytona, and Ninfa) of potato (Solanum tuberosum L.) for off-season production during plant aging and to analyse the possible relation between Chl parameters and tuber yield. Chl fluorescence parameters [initial fluorescence (F0), maximum fluorescence (Fm), Fv/Fm, time in which maximal fluorescence occurs (Tmax)] gained from Kautsky kinetics and Chl content were measured weekly, from 5th to 6th leaf appearance to beginning of plant senescence in the first season and to full plant senescence in the second season. F0 and Fv/Fm were the most reliable Chl fluorescence parameters for the definition of genotypic differences while Chl content and Tmax were the most reliable Chl parameters to predict plant aging. Tuber yield was highly correlated with Chl content, Tmax, F0, and Fm.  相似文献   

8.
During leaf senescence, chioroplast proteins, lipids and pigmentsundergo massive degradation releasing large amounts of nutrientsfor reuse elsewhere. Understandably, the chloroplast-degradingmachinery has been considered to operate within the chloroplastitself. However, most of those lipases and proteases that increaseduring senescence and have been localized occur in the vacuoleor cytoplasm rather than in the chloroplast. In chloroplastsof senescing (monocarpic) soybean (Glycine max) leaves, numerousplastoglobuli (lipid-protein globules) protruded through thechloroplast envelope and emerged into the cytoplasm, where theseglobules acquired a polygonal coat and eventually disintegrated.The fluorescence characteristics of these cytoplasmic globulesindicated that they contained chlorophyll or chlorophyll derivatives.The secreted globules were specific to senescing cells and wereabsent in old leaves of the ‘stay green’ genotypeGGd1d1d2d2 which shows a generalized inhibition of chloroplastdegradation. These observations suggest that the globules secretedby the chloroplast carry photosynthetic components to the cytoplasmor vacuole where they are degraded. This blebbing from the chloroplastsuggests the occurrence of a novel pathway for the degradationof photosynthetic components in senescing leaves, and it opensnew approaches to the study of chloroplast breakdown and itsregulation. 1 Permanent address: Instituto de Fisiología Vegetal,Universidad Nacional de La Plata, c. c. 327, 1900-La Plata,Argentina.  相似文献   

9.
Accumulation of ammonium and proline were reported as phenomena associated with plant response to stress and/or senescence. The effects of a preservative (8HQC + sucrose) and 24 hrs pulse conditioning with GA3 on the ammonium and proline contents were studied in senescing cut leaves of Zantedeschia aethiopica Spr. and Z. elliottiana Engl., grown for the florists green. Generally, accumulation of both compounds was observed in senescing leaves, however, the final ammonium and proline levels depended upon the species and the treatment applied. Conditioning with GA3, a treatment known to delay leaf senescence in Zantedeschia sp., prevented the increases in the ammonium and proline contents. Standard preservative solution used to prolong the longevity of cut flowers enhanced the ammonium accumulation in senescing leaves of both species, and the proline accumulation in the leaves of Z. aethiopica, but not in Z. elliottiana. These observations suggest that neither ammonium nor proline accumulation would be fully reliable predictors of cut leaf freshness during their entire market life. However, proline accumulation could serve as a quick test of freshness in the first half of the useful market life of cut leaves of Zantedeschia.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号