首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Verticillium wilt (Verticillium dahliae) is an economically important disease for many high-value crops. The pathogen is difficult to manage due to the long viability of its resting structures, wide host range, and the inability of fungicides to affect the pathogen once in the plant vascular system. In chile pepper (Capsicum annuum), breeding for resistance to Verticillium wilt is especially challenging due to the limited resistance sources. The dominant Ve locus in tomato (Solanum lycopersicum) contains two closely linked and inversely oriented genes, Ve1 and Ve2. Homologs of Ve1 have been characterized in diverse plant species, and interfamily transfer of Ve1 confers race-specific resistance. Queries in the chile pepper WGS database in NCBI with Ve1 and Ve2 sequences identified one open reading frame (ORF) with homology to the tomato Ve genes. Comparison of the candidate CaVe (Capsicum annuum Ve) gene sequences from susceptible and resistant accessions revealed 16 single nucleotide polymorphisms (SNPs) and several haplotypes. A homozygous haplotype was identified for the susceptible accessions and for resistant accessions. We developed a cleaved amplified polymorphic sequence (CAPS) molecular marker within the coding region of CaVe and screened diverse germplasm that has been previously reported as being resistant to Verticillium wilt in other regions. Based on our phenotyping using the New Mexico V. dahliae isolate, the marker could select resistance accessions with 48% accuracy. This molecular marker is a promising tool towards marker-assisted selection for Verticillium wilt resistance and has the potential to improve the efficacy of chile pepper breeding programs, but does not eliminate the need for a bioassay. Furthermore, this work provides a basis for future research in this important pathosystem.  相似文献   

2.
3.
4.

Key message

Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified.

Abstract

The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS–LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.
  相似文献   

5.
Cryptomeria japonica pollinosis is one of the most serious allergic diseases in Japan; this is a social problem because C. japonica is the most important Japanese forestry species. In order to reduce the amount of pollen dispersed, breeding programs using trees with male-sterile genes have been implemented. High-density linkage maps with stable ordering of markers facilitate the localization of male-sterile genes and the construction of partial linkage maps around them in order to develop markers for use in marker-assisted selection. In this study, a high-density linkage map for C. japonica with 2560 markers was constructed. The observed map length was 1266.2 cM and the mean distance between adjacent markers was 0.49 cM. Using information from this high-density map, we newly located two male-sterile genes (ms3 and ms4) on the first and fourth linkage groups, respectively, and constructed partial linkage maps around these loci. We also constructed new partial linkage maps around the ms1 and ms2 loci using additional SNP markers. The closest markers to the ms1, ms2, ms3, and ms4 male-sterile loci were estSNP04188 (1.8 cM), estSNP00695 (7.0 cM), gSNP05415 (3.1 cM), and estSNP01408 (7.0 cM) respectively. These results allowed us to develop SNP markers tightly linked to the male sterile genes for use in MAS; this will accelerate the future isolation of these genes by map-based cloning approaches.  相似文献   

6.
7.
8.
9.
Carotenes are plant secondary metabolites that are important for human health. Additionally, carotenes influence fruit color, which is a major trait for breeding. We compared the expression and sequences of genes related to color phenotypes in tomato inbred lines that produce different colors of fleshy fruit. Up-regulation of CYC-B expression and higher amount of β-carotene content in fruit ripening stage and nucleotide variations in the 5′ region of the gene were detected in orange fruited inbred lines compared to the other lines. Our results indicated that there is a close relationship between the expression pattern of the CYC-B gene and the orange color of fleshy fruit. We identified 4 SNPs in the promoter region of CYC-B genes associated with the orange fruit color. Moreover, the segregation ratio and color phenotypes in an F2 generation further indicated that one of the detected SNPs were associated with the orange color in the tested inbred lines. Our study provides valuable information to breeders for marker-assisted selection to produce desirable tomato varieties with health benefits by varying carotenoid levels.  相似文献   

10.
The whitebacked planthopper (WBPH), Sogatella furcifera Horvath, is one of the most destructive pests in rice (Oryza sativa L.) production. Host-plant resistance has been considered as an efficient and eco-friendly strategy to reduce yield losses caused by WBPH. In this study, we found that an indica rice cultivar IR54751-2-44-15-24-2 (IR54751) displayed high resistance to WBPH at both seedling and tillering stages. The resistance of IR54751 was mainly contributed by antixenosis and tolerance rather than antibiosis. An F2 population derived from a cross between IR54751 and a susceptible japonica cultivar 02428 was constructed to detect the quantitative trait loci (QTLs) conferring the resistance to WBPH. In total, four QTLs including qWBPH3.1, qWBPH3.2, qWBPH11, and qWBPH12 were identified and distributed on three different chromosomes. The four QTLs had LOD scores of 3.8, 8.2, 5.8, and 3.9, accounting for 8.2, 21.5, 13.9, and 10.4% of the phenotypic variation, respectively. Except for qWBPH3.1, the resistance alleles of the other three QTLs were all from IR54751. Further, a secondary population harboring only single qWBPH11 locus was developed from the F2 population by marker-assisted selection. Finally, qWBPH11 was delimited in a 450-kb region between markers DJ53973 and SNP56. The identification of WBPH resistance QTLs and the fine mapping of qWBPH11 will be helpful for cloning resistance genes and breeding resistant rice cultivars.  相似文献   

11.
Root-knot nematodes (RKNs) can severely damage crops, including peppers, worldwide. The application of resistance genes identified in the Capsicum annuum genome may represent a safe and economically relevant strategy for controlling RKNs. Among the Me genes (Me1, Me3, Me7, and N) that have been mapped to a cluster on chromosome P9, Me1 confers a heat-stable and broad-spectrum resistance that is difficult for virulent RKNs to overcome. In this study, we developed several closely linked kompetitive allele-specific PCR (KASPar) markers, simple sequence repeat (SSR) markers, sequence characterized amplified region (SCAR) markers, and high-resolution melting (HRM) markers for the mapping of RKN-resistance genes. Analyses of 948 individuals (BC1 and F2 progenies) revealed that Me1 was located between SCAR marker 16880-1-V2 and HRM marker 16830-H-V2, with 13 and 0 recombination events with Me1, respectively. These markers were localized to a 132-kb interval, which included six genes. The development of several PCR-based markers closely linked to Me1 will be useful for the marker-assisted selection of RKN resistance in pepper cultivars. Among these markers, 16830-H-V2 and 16830-CAPS are present in the CA09g16830 gene, which is predicted to be a putative late blight resistance protein homolog R1A-3 gene. This gene appears to be a suitable Me1 candidate gene.  相似文献   

12.

Key message

An NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2.

Abstract

Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.
  相似文献   

13.
Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance.  相似文献   

14.
Melanocortin 4 receptor: (MC4R) and Myostatin (MSTN) are two important growth trait-related genes in animals. In this study, we showed that two SNPs, MC4R-719A>G and MSTN-519C>T, found in the promoters of the MC4R and MSTN genes, respectively, are both associated with growth traits in Spinibarbus hollandi. Furthermore, we observed that there were significant associations between the expression levels of the MC4R and MSTN genes and these two growth trait-related SNPs. The expression level of MC4R gene in brain was lower in GG genotype fish with extremely high growth performance than that in AA genotype fish with extremely low growth performance. Expression level of the MSTN gene in muscle was lower in TT genotype fish with extremely high growth performance than that in CC and CT genotype fish with lower growth performance. The results indicated that these SNPs located in the promoters of MC4R and MSTN are associated with growth-related traits through modification of gene expression levels. The MSTN and MC4R SNPs may have useful application in effective marker-assisted selection aimed to increase output in S. hollandi.  相似文献   

15.
The interaction between mouse angora-Y (Fgf5 go-Y) and hairless (hr) genes have been studied. Homozygous mutant gene Fgf5 go-Y increases length of all hair types, while homozygotes for the h gene lose hair completely starting on day 14 after birth. We obtained mice with genotypes +/+ hr/hr F2, +/Fgf5 go-Y hr/hr and Fgf5 go-Y/Fgf5 go-Y hr/hr. Both +/Fgf5 go-Y hr/hr and +/+ hr/hr mice began to loose hair from their heads on day 14. This further extended on the whole body. On day 21 the mice were completely deprived of hair. Therefore a single dose of gene Fgf5 go-Y does not modify alopecia in mice homozygous for hr. However in double homozygotes Fgf5 go-Y/Fgf5 go-Y hr/hr alopecia started 4 days later, namely on day 18. It usually finished 10–12 days after detection of first bald patches. On days 28–30 double homozygotes lose coat completely. Hair loss in double homozygous mice was 1.5-fold slower than in +/+ hr/hr mice. This resulted from a significant extension of anagen phase induced by a mutant homozygous gene Fgf5 go-Y in morphogenesis of the hair follicle. The hr gene was expressed at the transmission phase from anagen to catagen. Our data shows that the angora gene is a modifier of the hairless gene and this results in a strong repression of alopecia progression in double homozygous mice compared to +/+ hr/hr animals.  相似文献   

16.
17.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

18.

Key message

pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress.

Abstract

Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.
  相似文献   

19.
Seed dormancy is a key domestication trait for major crops, which is acquired in long-term systems development processes and enables the survival of plants in adverse natural conditions. It is a complex trait under polygenic control and is affected by endogenous and environmental factors. In the present study, a major seed dormancy QTL in sorghum (Sorghum bicolor (L.) Moench), qDor7, detected previously, was fine mapped using a large, multi-generational population. The qDor7 locus was delimited to a 96-kb region which contains 16 predicted gene models. These results lay a solid foundation for cloning qDor7. In addition, the functional markers tightly linked to the seed dormancy QTL may be used in marker-assisted selection for seed dormancy in sorghum.  相似文献   

20.
A novel male-sterile maize mutant male sterility 39 (ms39) was obtained from offspring of the commercial hybrid Chuandan No. 9 that had been carried into outer space. A previous study demonstrated that ms39 is controlled by a single recessive nuclear gene, located on the long arm of chromosome 3. Here, we used 1073 mutant individuals derived from the (ms39?×?Mo17) F2 population and sequentially developed new primers to identify markers supporting the fine mapping of ms39. A 365-kb region on chromosome 3 flanked by markers L8 and M30 at a genetic distance of 0.18 and 0.47 cM, respectively, was identified. According to the reference sequence of ZmB73_Ref-Gen_v4, 12 candidate genes were identified within the 365-kb mapping region. Based on cloning and sequence BLAST analysis of the 12 candidate genes, a four-base-pair deletion was found within the exon of Zm00001d043909, which encoded callose synthase12. This four-base-pair deletion resulted in a frameshift mutation in ms39, leading to the earlier termination of the coding protein, and ultimately caused abnormal performance of the callose synthase. Additionally, cytological observation was conducted on a sister cross population (ms39/ms39?×?ms39/Ms39). These observations showed that the tapetum cells of the ms39 mutant appeared abnormal from the dyad stage, and aborted microspores were observed during pollen development. These results lay the foundation for the cloning of ms39 and exploration of the molecular mechanism underlying aborted pollen development in ms39 maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号