首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229.  相似文献   

3.
Alanine scanning was used to determine the affinity contributions of 10 side chain amino acids (residues at position 50-60 inclusive) of H chain complementarity-determining region 2 (HCDR2) of the somatically mutated high-affinity anti-p-azophenylarsonate Ab, 36-71. Each mutated H chain gene was expressed in the context of mutated (36-71L) and the unmutated (36-65L) L chains to also assess the contribution of L chain mutations to affinity. Combined data from fluorescence quenching, direct binding, inhibition, and capture assays indicated that mutating H:Tyr(50) and H:Tyr(57) to Ala in the 36-71 H chain results in significant loss of binding with both mutated (36-71L) or unmutated (36-65L) L chain, although the decrease was more pronounced when unmutated L chain was used. All other HCDR2 mutations in 36-71 had minimal effect on Ab affinity when expressed with 36-71 L chain. However, in the context of unmutated L chain, of H:Gly(54) to Ala resulted in significant loss of binding, while Abs containing Asn(52) to Ala, Pro(53) to Ala, or Ile(58) to Ala mutation exhibited 4.3- to 7.1-fold reduced affinities. When alanine scanning was performed instead on certain HCDR2 residues of the germline-encoded (unmutated) 36-65 Ab and expressed with unmutated L chain as Fab in bacteria, these mutants exhibited affinities similar to or slightly higher than the wild-type 36-65. These findings indicate an important role of certain HCDR2 side chain residues on Ab affinity and the constraints imposed by L chain mutations in maintaining Ag binding.  相似文献   

4.
《MABS-AUSTIN》2013,5(3):773-781
Interleukin-6 (IL-6) is a critical regulator of the immune system and has been widely implicated in autoimmune disease. Here, we describe the discovery and characterization of olokizumab, a humanized antibody to IL-6. Data from structural biology, cell biology and primate pharmacology demonstrate the therapeutic potential of targeting IL-6 at “Site 3”, blocking the interaction with the signaling co-receptor gp130.  相似文献   

5.
The continued emergence of new SARS-CoV-2 variants has accentuated the growing need for fast and reliable methods for the design of potentially neutralizing antibodies (Abs) to counter immune evasion by the virus. Here, we report on the de novo computational design of high-affinity Ab variable regions (Fv) through the recombination of VDJ genes targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike receptor binding domain (RBD) protein using the software tool OptMAVEn-2.0. Subsequently, we carried out computational affinity maturation of the designed variable regions through amino acid substitutions for improved binding with the target epitope. Immunogenicity of designs was restricted by preferring designs that match sequences from a 9-mer library of “human Abs” based on a human string content score. We generated 106 different antibody designs and reported in detail on the top five that trade-off the greatest computational binding affinity for the RBD with human string content scores. We further describe computational evaluation of the top five designs produced by OptMAVEn-2.0 using a Rosetta-based approach. We used Rosetta SnugDock for local docking of the designs to evaluate their potential to bind the spike RBD and performed “forward folding” with DeepAb to assess their potential to fold into the designed structures. Ultimately, our results identified one designed Ab variable region, P1.D1, as a particularly promising candidate for experimental testing. This effort puts forth a computational workflow for the de novo design and evaluation of Abs that can quickly be adapted to target spike epitopes of emerging SARS-CoV-2 variants or other antigenic targets.  相似文献   

6.
By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.  相似文献   

7.
Deciphering antibody‐protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein‐protein complexes. We investigated the physicochemical properties of regions on and away from the antibody‐antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody‐protein antigen recognition is entropy driven, with residues having low side‐chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody‐antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody‐antigen interfaces and of Fab domains as compared with nonantibody protein‐protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures.  相似文献   

8.
Interleukin-6 (IL-6) is a critical regulator of the immune system and has been widely implicated in autoimmune disease. Here, we describe the discovery and characterization of olokizumab, a humanized antibody to IL-6. Data from structural biology, cell biology and primate pharmacology demonstrate the therapeutic potential of targeting IL-6 at “Site 3”, blocking the interaction with the signaling co-receptor gp130.  相似文献   

9.
Earlier immunological experiments with a synthetic 36‐residue peptide (75‐110) from Influenza hemagglutinin have been shown to elicit anti‐peptide antibodies (Ab) which could cross‐react with the parent protein. In this article, we have studied the conformational features of a short antigenic (Ag) peptide (98YPYDVPDYASLRS110) from Influenza hemagglutinin in its free and antibody (Ab) bound forms with molecular dynamics simulations using GROMACS package and OPLS‐AA/L all‐atom force field at two different temperatures (293 K and 310 K). Multiple simulations for the free Ag peptide show sampling of ordered conformations and suggest different conformational preferences of the peptide at the two temperatures. The free Ag samples a conformation crucial for Ab binding (β‐turn formed by “DYAS” sequence) with greater preference at 310 K while, it samples a native‐like conformation with relatively greater propensity at 293 K. The sequence “DYAS” samples β‐turn conformation with greater propensity at 310 K as part of the hemagglutinin protein also. The bound Ag too samples the β‐turn involving “DYAS” sequence and in addition it also samples a β‐turn formed by the sequence “YPYD” at its N‐terminus, which seems to be induced upon binding to the Ab. Further, the bound Ag displays conformational flexibility at both 293 K and 310 K, particularly at terminal residues. The implications of these results for peptide immunogenicity and Ag–Ab recognition are discussed. Proteins 2015; 83:1352–1367. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Synthetic antibody libraries with restricted chemical diversity were used to explore the intrinsic contributions of four amino acids (Tyr, Ser, Gly and Arg) to the affinity and specificity of antigen recognition. There was no correlation between nonspecific binding and the content of Tyr, Ser or Gly in the antigen-binding site, and in fact, the most specific antibodies were those with the highest Tyr content. In contrast, Arg content was clearly correlated with increased nonspecific binding. We combined Tyr, Ser and Gly to generate highly specific synthetic antibodies with affinities in the subnanomolar range, showing that the high abundance of Tyr, Ser and Gly in natural antibody germ line sequences reflects the intrinsic capacity of these residues to work together to mediate antigen recognition. Despite being a major functional contributor to co-evolved protein-protein interfaces, we find that Arg does not contribute generally to the affinity of naïve antigen-binding sites and is detrimental to specificity. Again, this is consistent with studies of natural antibodies, which have shown that nonspecific, self-reactive antibodies are rich in Arg and other positively charged residues. Our findings suggest that the principles governing naïve molecular recognition differ from those governing co-evolved interactions. Analogous studies can be designed to explore the roles of the other amino acids in molecular recognition. Results of such studies should illuminate the basic principles underlying natural protein-protein interactions and should aid the design of synthetic binding proteins with functions beyond the scope of natural proteins.  相似文献   

11.
The crystal structure of Fab of an Ab PC283 complexed with its corresponding peptide Ag, PS1 (HQLDPAFGANSTNPD), derived from the hepatitis B virus surface Ag was determined. The PS1 stretch Gln2P to Phe7P is present in the Ag binding site of the Ab, while the next three residues of the peptide are raised above the binding groove. The residues Ser11P, Thr12P, and Asn13P then loop back onto the Ag-binding site of the Ab. The last two residues, Pro14P and Asp15P, extend outside the binding site without forming any contacts with the Ab. The PC283-PS1 complex is among the few examples where the light chain complementarity-determining regions show more interactions than the heavy chain complementarity-determining regions, and a distal framework residue is involved in Ag binding. As seen from the crystal structure, most of the contacts between peptide and Ab are through the five residues, Leu3-Asp4-Pro5-Ala6-Phe7, of PS1. The paratope is predominantly hydrophobic with aromatic residues lining the binding pocket, although a salt bridge also contributes to stabilizing the Ag-Ab interaction. The molecular surface area buried upon PS1 binding is 756 A(2) for the peptide and 625 A(2) for the Fab, which is higher than what has been seen to date for Ab-peptide complexes. A comparison between PC283 structure and a homology model of its germline ancestor suggests that paratope optimization for PS1 occurs by improving both charge and shape complementarity.  相似文献   

12.
The use of anti-idiotypic antibodies as immunogens represents one potential approach to active specific immunotherapy of cancer. Two panels of syngeneic monoclonal anti-idiotypic antibodies were generated. One panel was directed against mAb CC49 and the other to mAb COL-1. mAb CC49 recognizes the pancarcinoma antigen (Ag), tumor-associated glycoprotein-72 (TAG-72), and mAb COL-1 recognizes carcinoembryonic antigen (CEA). Seven anti-idiotypic (AI) antibodies (Ab2) designated AI49-1–7 were generated that recognize the variable region of mAb CC49. These mAb were shown to inhibit the interaction of mAb CC49 (Ab1) with TAG-72 (Ag). Five anti-idiotypic antibodies designated CAI-1–5 were also generated to the anti-CEA mAb, COL-1 (Ab1). These Ab2 were shown to inhibit the interaction between COL-1 (Ab1) and CEA (Ag). Immunization of mice, rats, and rabbits with Ab2 directed against CC49 or COL-1 could not elicit specific Ab3 humoral immune responses, i.e., antibody selectively reactive with their respective target antigens. However, immunization of mice with the CC49 anti-idiotypic antibody (Ab2), designated AI49-3, could induce a delayed-type hypersensitivity response (DTH) specific for tumor cells that express TAG-72. Similarly, immunization of mice with an anti-idiotypic antibody directed against COL-1, designated CAI-1, could induce specific DTH cell-mediated immune responses to murine tumor cells that express human CEA on their surface. These results thus demonstrate that while some anti-idiotype mAb may not be potent immunogens in eliciting Ab3 humoral responses, they are capable of eliciting specific cellular immune responses against human carcinoma-associated antigens. This type of mAb may ultimately be useful in active immunotherapy protocols for human carcinoma.Some of the studies described in this paper were in partial fulfillment of requirements for the completion of Dr. Irvine's dissertation at the George Washington University  相似文献   

13.
The monoclonal antibody 2F5 neutralizes a broad range of human immunodeficiency virus-1 isolates via a conserved epitope on the viral glycoprotein gp41. The conformation of the principal epitope is a type I β-turn centered on gp41 residues 664DKW666; in addition, binding studies indicate that residues N- and C-terminal to this core as well as structurally more distant parts of gp41 also contribute to the interaction. Ab2/3H6 is an anti-idiotypic antibody that inhibits the interaction between 2F5 and gp41 and as such, Ab2/3H6 may, in principle, possess a paratope that mimics the gp41 epitope. To establish the potential of Ab2/3H6 to serve as a guide for the design of vaccine components against human immunodeficiency virus, we investigated the crystal structure of the heterodimeric complex of Ab2/3H6 Fab and 2F5 Fab′. Ab2/3H6 Fab binds to 2F5 Fabvia a helix-like protrusion formed by residues 58(H)RYSPSLNTRL67(H) of the 2F5 Fab′ variable domain and proximal to but not overlapping with the gp41 664DKW666 epitope-binding pocket. This defines Ab2/3H6 as an anti-idiotypic antibody of the Ab2γ class, i.e., an antigen-inhibitable idiotype that does not carry the internal image of the linear primary gp41 662ELDKWAS668 epitope.  相似文献   

14.
CD22, a B lymphocyte membrane glycoprotein, contains immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic region and recruits Src homology 2-containing protein-tyrosine phosphatase-1 (SHP-1) to the phosphorylated ITIMs upon ligation of B lymphocyte antigen receptor (BCR), thereby negatively regulating BCR signaling. Among the three previously identified ITIMs, both ITIMs containing tyrosine residues at position 843 (Tyr(843)) and 863 (Tyr(863)), respectively, are shown to be required for CD22 to recruit SHP-1 and regulate BCR signaling upon BCR ligation by anti-Ig antibody (Ab), indicating that CD22 has the SHP-1-binding domain at the region containing Tyr(843) and Tyr(863). Here we address the requirement of CD22 for SHP-1 recruitment and BCR regulation upon BCR ligation by antigen, which induces much stronger CD22 phosphorylation than anti-Ig Ab does. We demonstrate that the CD22 mutant in which both Tyr(843) and Tyr(863) are replaced by phenylalanine (CD22F5/6) recruits SHP-1 and regulates BCR signaling upon stimulation with antigen but not anti-Ig Ab. This result strongly suggests that CD22 contains another SHP-1 binding domain that is specifically activated upon stimulation with antigen. Both of the flanking sequences of Tyr(783) and Tyr(817) fit the consensus sequence of ITIM, and the CD22F5/6 mutant requires these tyrosine residues for SHP-1 binding and BCR regulation. Thus, these ITIMs constitute a novel conditional SHP-1-binding site of CD22 that is activated upon BCR ligation by antigen but not by anti-Ig Ab.  相似文献   

15.
The Lewis Y Ag is a carbohydrate Ag which is closely related to a well-known murine embryonic Ag, the stage-specific embryonic Ag-1 (SSEA-1), in its biochemical structure. It is expressed at the surface of murine embryonic cells as well as many murine cancer cells. For the analysis of idiotopes carried by the anti-Lewis Y antibodies, we generated two syngenic anti-idiotypic mAb, Id-A1 and Id-B4 (both BALB/c IgG1), which are directed to the idiotypic determinants carried by the anti-Lewis Y mAb, AH-6 (BALB/c IgM). Both Id-A1 and Id-B4 (Ab2) recognized paratope-related idiotopes carried by the AH-6 antibody (Ab1); they specifically inhibited the binding of AH-6 to the Lewis Y Ag. The high idiotypic connectivity of anti-Lewis Y antibodies was noted; the polyclonal anti-idiotype antibody, produced in the sera of BALB/c mice by immunizing AH-6 antibody, cross-reacted with several anti-Lewis Y mAb which has been established in different laboratories. Id-B4 and Id-A1 seem to represent such cross-reactive anti-idiotypic antibodies. Id-A1 recognized an idiotope carried by two out of six panel Ab1 mAb directed to the Lewis Y Ag. Id-B4 reacted with four out of the six panel antibodies, and was considered to recognize a recurrent idiotope of anti-Lewis Y antibodies which occurs more commonly than the idiotope recognized by Id-A1. All of the anti-Lewis Y antibodies which carry idiotopes that react with Id-A1 or Id-B4 were encoded by the VH genes of the VH7183 family; the most D-J proximal VH gene family in BALB/c mice, which is known to be preferentially expressed in embryonic B cells. Immunization of BALB/c mice with keyhole limpet hemocyanin-conjugated Id-B4 and/or Id-A1 induced a significant titer of anti-Lewis Y antibodies (Ab1-like Ab3) in the sera.  相似文献   

16.
Synthetic libraries are a major source of human-like antibody (Ab) drug leads. To assess the similarity between natural Abs and the products of these libraries, we compared large sets of natural and synthetic Abs using “CDRs Analyzer,” a tool we introduce for structural analysis of Ab-antigen (Ag) interactions. Natural Abs, we found, recognize their Ags by combining multiple complementarity-determining regions (CDRs) to create an integrated interface. Synthetic Abs, however, rely dominantly, sometimes even exclusively on CDRH3. The increased contribution of CDRH3 to Ag binding in synthetic Abs comes with a substantial decrease in the involvement of CDRH2 and CDRH1. Furthermore, in natural Abs CDRs specialize in specific types of non-covalent interactions with the Ag. CDRH1 accounts for a significant portion of the cation-pi interactions; CDRH2 is the major source of salt-bridges and CDRH3 accounts for most hydrogen bonds. In synthetic Abs this specialization is lost, and CDRH3 becomes the main sources of all types of contacts. The reliance of synthetic Abs on CDRH3 reduces the complexity of their interaction with the Ag: More Ag residues contact only one CDR and fewer contact 3 CDRs or more. We suggest that the focus of engineering attempts on CDRH3 results in libraries enriched with variants that are not natural-like. This may affect not only Ag binding, but also Ab expression, stability and selectivity. Our findings can help guide library design, creating libraries that can bind more epitopes and Abs that better mimic the natural antigenic interactions.  相似文献   

17.
If we understand the structural rules governing antibody (Ab)-antigen (Ag) interactions in a given virus, then we have the molecular basis to attempt to design and synthesize new epitopes to be used as vaccines or optimize the antibodies themselves for passive immunization. Comparing the binding of several different antibodies to related Ags should also further our understanding of general principles of recognition.To obtain and compare the three-dimensional structure of a large number of different complexes, however, we need a faster method than traditional experimental techniques. While biocomputational docking is fast, its results might not be accurate. Combining experimental validation with computational prediction may be a solution.As a proof of concept, here we isolated a monoclonal Ab from the blood of a human donor recovered from dengue virus infection, characterized its immunological properties, and identified its epitope on domain III of dengue virus E protein through simple and rapid NMR chemical shift mapping experiments. We then obtained the three-dimensional structure of the Ab/Ag complex by computational docking, using the NMR data to drive and validate the results. In an attempt to represent the multiple conformations available to flexible Ab loops, we docked several different starting models and present the result as an ensemble of models equally agreeing with the experimental data. The Ab was shown to bind a region accessible only in part on the viral surface, explaining why it cannot effectively neutralize the virus.  相似文献   

18.
Recombinant antibodies are increasingly used as therapeutics for a wide variety of diseases. Generation of cell lines expressing high levels of recombinant antibody typically requires labor-intensive cloning and screening steps. We describe a mammalian expression system for the high-level production of full-length antibody molecules. It has been shown that the dihydrofolate reductase (DHFR) selectable marker can be divided into two fragments that, with the aid of a leucine zipper, can re-associate to form an active molecule. Using bicistronic vectors, we linked the expression of each antibody chain to the expression of a DHFR fragment. Survival in selective media requires expression of both DHFR fragments that, by virtue of these vectors, also selects for the expression of both antibody chains. Initial pools produced 5 microg of Ab/10(6) cells/d (qP = microg/10(6) cells/d). Expression of each antibody chain in conjunction with a portion of DHFR also leads to concurrent amplification of both antibody chains in the presence of methotrexate, a DHFR inhibitor, and results in a two- to fivefold increase in antibody production with basal qPs ranging from 10-25 ug/10(6) cells/d. Shake-flask cultures of amplified pools produced up to 600 mg/L of antibody in 7 days. This system allows for rapid generation of antibodies without cloning and greatly simplifies selection of cell lines for the production of potential antibody therapeutics.  相似文献   

19.
Recombinant monoclonal antibodies (Ab's) have widespread application as research tools, diagnostic reagents and as biotherapeutics. Whilst studying the cellular molecular switch protein m‐ras, a recombinant monoclonal antibody to m‐ras was generated for use as a research tool. Antibody genes from a single rabbit B cell secreting IgG to an m‐ras specific peptide sequence were expressed in mammalian cells, and monoclonal rabbit IgG binding was characterized by ELISA and peptide array blotting. Although the monoclonal Ab was selected for specificity to m‐ras peptide, it also bound to both recombinant full‐length m‐ras and h‐ras proteins. The cross‐reactive binding of the monoclonal Ab to h‐ras was defined by peptide array blot revealing that the Ab showed preference for peptide sequences containing multiple positively charged amino acid residues. These data reinforce the concept of antibody multispecificity through multiple interactions of the Ab paratope with diverse polypeptides. They also emphasize the importance of immunogen and Ab selection processes when generating recombinant monoclonal Ab's.  相似文献   

20.
Antibodies specific for the immunizing Ag (Ab1) (Id+ Ag+) and Ab3 (Id+ Ag+ or Id+ Ag-) of the (Glu60 Tyr10 Ala30) (GAT) idiotypic cascade express similar pGAT public determinants in BALB/c and C57BL/6 strains. These determinants have been shown to be dependent upon both VH and Vkappa encoded segments. The VH of the BALB/c Ab1 (germ-line gene H10) and that of the C57BL/6 Ab1 (germ-line gene V186-2) are only 75% homologous, whereas VK are much more conserved. C57BL/6 mice were immunized with BALB/c Ab2 (anti-idiotypic) antibodies and monoclonal Ab3 were derived after fusion of immunized spleen cells with the nonsecreting hybridoma cell line Sp/2.0-Ag. From 13 cell lines, five clones (four Id+ Ag- and one Id+ Ag+) were isolated and the mRNA V regions sequenced. Immunization with BALB/c anti-idiotypes elicits expression of the same or closely related C57BL/6 VH and Vkappa genes as when C57BL/6 mice were immunized with GAT, although functional VH BALB/c equivalents have been isolated in the B6 strain. Our results suggest that manipulation of the repertoire via antigenic or idiotypic stimulation both lead to the expression of different genes in different strains. They further confirm that the immune system is largely degenerate, for both idiotype expression and Ag recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号