首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ureaplasma urealyticum urease genes; use of a UGA tryptophan codon   总被引:29,自引:0,他引:29  
Nucleotide sequence analysis of a Ureaplasma urealyticum DNA fragment, homologous to cloned urease genes of other prokaryotes, revealed three consecutive open reading frames. The molecular weights of the three deduced polypeptides are 11.2 kD, 13.6 kD and 66.6 kD. These values are consistent with the size of the three subunits previously reported for purified native urease. A significant sequence homology was found between the three polypeptides of the ureaplasmal urease and the single polypeptide of jack bean (Canavalia ensiformis) urease. Codon usage indicates that UGA is a tryptophan codon in this mollicute. Use of polymerase chain reactions has disclosed the existence of genetic polymorphism among the urease genes of different serotypes of U. urealyticum.  相似文献   

2.
Studies with two uropathogenic urease-producing Escherichia coli strains, 1021 and 1440, indicated that the urease genes of each are distinct. Recombinant plasmids encoding urease activity from E. coli 1021 and 1440 differed in their restriction endonuclease cleavage sites and showed minimal DNA hybridization under stringent conditions. The polypeptides encoded by the DNA fragments containing the 1021 and 1440 urease loci differed in electrophoretic mobility under reducing conditions. Regulation of urease gene expression differed in the two ureolytic E. coli. The E. coli 1021 locus is probably chromosomally encoded and has DNA homology to Klebsiella, Citrobacter, Enterobacter, and Serratia species and to about one-half of the urease-producing E. coli tested. The E. coli 1440 locus is plasmid encoded; plasmids with DNA homology to the 1440 locus probe were found in urease-producing Salmonella spp., Providencia stuartii, and two E. coli isolates. In addition, the 1440 urease probe was homologous to Proteus mirabilis DNA.  相似文献   

3.
Helicobacter pylori produces a potent urease that is believed to play a role in the pathogenesis of gastroduodenal diseases. Four genes (ureA, ureB, ureC, and ureD) were previously shown to be able to achieve a urease-positive phenotype when introduced into Campylobacter jejuni, whereas Escherichia coli cells harboring these genes did not express urease activity (A. Labigne, V. Cussac, and P. Courcoux, J. Bacteriol. 173:1920-1931, 1991). Results that demonstrate that H. pylori urease genes could be expressed in E. coli are presented in this article. This expression was found to be dependent on the presence of accessory urease genes hitherto undescribed. Subcloning of the recombinant cosmid pILL585, followed by restriction analyses, resulted in the cloning of an 11.2-kb fragment (pILL753) which allowed the detection of urease activity (0.83 +/- 0.39 mumol of urea hydrolyzed per min/mg of protein) in E. coli cells grown under nitrogen-limiting conditions. Transposon mutagenesis of pILL753 with mini-Tn3-Km permitted the identification of a 3.3-kb DNA region that, in addition to the 4.2-kb region previously identified, was essential for urease activity in E. coli. Sequencing of the 3.3-kb DNA fragment revealed the presence of five open reading frames encoding polypeptides with predicted molecular weights of 20,701 (UreE), 28,530 (UreF), 21,744 (UreG), 29,650 (UreH), and 19,819 (UreI). Of the nine urease genes identified, ureA, ureB, ureF, ureG, and ureH were shown to be required for urease expression in E. coli, as mutations in each of these genes led to negative phenotypes. The ureC, ureD, and ureI genes are not essential for urease expression in E. coli, although they belong to the urease gene cluster. The predicted UreE and UreG polypeptides exhibit some degree of similarity with the respective polypeptides encoded by the accessory genes of the Klebsiella aerogenes urease operon (33 and 92% similarity, respectively, taking into account conservative amino acid changes), whereas this homology was restricted to a domain of the UreF polypeptide (44% similarity for the last 73 amino acids of the K. aerogenes UreF polypeptide). With the exception of the two UreA and UreB structural polypeptides of the enzyme, no role can as yet be assigned to the nine proteins encoded by the H. pylori urease gene cluster.  相似文献   

4.
Abstract The genes encoding urease activity of Klebsiella pneumoniae were cloned and expressed in Escherichia coli . Transformants containing recombinant plasmids were selected by the antibiotic resistance phenotype and the production of urease in a Urease-test agar. Deletion derivatives of the parental recombinant plasmid were construced, and the relative position of six genes, necessary for urease production, was determined. Using a colorimetric assay it was demonstrated that some of the transformants exhibited ureolytic activity up to six-times greater than that of the original K pneumoniae isolate. Dot-blot DNA hybridization analysis revealed that the urease gene cluster of K. pneumoniae possesses no significant homology with those of Proteus species and Morganella morganii .  相似文献   

5.
Production of a potent urease has been described as a trait common to all Helicobacter pylori so far isolated from humans with gastritis as well as peptic ulceration. The detection of urease activity from genes cloned from H. pylori was made possible by use of a shuttle cosmid vector, allowing replication and movement of cloned DNA sequences in either Escherichia coli or Campylobacter jejuni. With this approach, we cloned a 44-kb portion of H. pylori chromosomal DNA which did not lead to urease activity when introduced into E. coli but permitted, although temporarily, biosynthesis of the urease when transferred by conjugation to C. jejuni. The recombinant cosmid (pILL585) expressing the urease phenotype was mapped and used to subclone an 8.1-kb fragment (pILL590) able to confer the same property to C. jejuni recipient strains. By a series of deletions and subclonings, the urease genes were localized to a 4.2-kb region of DNA and were sequenced by the dideoxy method. Four open reading frames were found, encoding polypeptides with predicted molecular weights of 26,500 (ureA), 61,600 (ureB), 49,200 (ureC), and 15,000 (ureD). The predicted UreA and UreB polypeptides correspond to the two structural subunits of the urease enzyme; they exhibit a high degree of homology with the three structural subunits of Proteus mirabilis (56% exact matches) as well as with the unique structural subunit of jack bean urease (55.5% exact matches). Although the UreD-predicted polypeptide has domains relevant to transmembrane proteins, no precise role could be attributed to this polypeptide or to the UreC polypeptide, which both mapped to a DNA sequence shown to be required to confer urease activity to a C. jejuni recipient strain.  相似文献   

6.
7.
Helicobacter pylori urease, a nickel-requiring metalloenzyme, hydrolyzes urea to NH3 and CO2. We sought to identify H. pylori genes that modulate urease activity by constructing pHP8080, a plasmid which encodes both H. pylori urease and the NixA nickel transporter. Escherichia coli SE5000 and DH5alpha transformed with pHP8080 resulted in a high-level urease producer and a low-level urease producer, respectively. An H. pylori DNA library was cotransformed into SE5000 (pHP8080) and DH5alpha (pHP8080) and was screened for cotransformants expressing either lowered or heightened urease activity, respectively. Among the clones carrying urease-enhancing factors, 21 of 23 contained hp0548, a gene that potentially encodes a DNA helicase found within the cag pathogenicity island, and hp0511, a gene that potentially encodes a lipoprotein. Each of these genes, when subcloned, conferred a urease-enhancing activity in E. coli (pHP8080) compared with the vector control. Among clones carrying urease-decreasing factors, 11 of 13 clones contained the flbA (also known as flhA) flagellar biosynthesis/regulatory gene (hp1041), an lcrD homolog. The LcrD protein family is involved in type III secretion and flagellar secretion in pathogenic bacteria. Almost no urease activity was detected in E. coli (pHP8080) containing the subcloned flbA gene. Furthermore, there was significantly reduced synthesis of the urease structural subunits in E. coli (pHP8080) containing the flbA gene, as determined by Western blot analysis with UreA and UreB antiserum. Thus, flagellar biosynthesis and urease activity may be linked in H. pylori. These results suggest that H. pylori genes may modulate urease activity.  相似文献   

8.
The urease of thermophilic Bacillus sp. strain TB-90 is composed of three subunits with molecular masses of 61, 12, and 11 kDa. By using synthetic oligonucleotide probes based on N-terminal amino acid sequences of each subunit, we cloned a 3.2-kb EcoRI fragment of TB-90 genomic DNA. Moreover, we cloned two other DNA fragments by gene walking starting from this fragment. Finally, we reconstructed in vitro a 6.2-kb DNA fragment which expressed catalytically active urease in Escherichia coli by combining these three DNA fragments. Nucleotide sequencing analysis revealed that the urease gene complex consists of nine genes, which were designed ureA, ureB, ureC, ureE, ureF, ureG, ureD, ureH, and ureI in order of arrangement. The structural genes ureA, ureB, and ureC encode the 11-, 12-, and 61-kDa subunits, respectively. The deduced amino acid sequences of UreD, UreE, UreF, and UreG, the gene products of four accessory genes, are homologous to those of the corresponding Ure proteins of Klebsiella aerogenes. UreD, UreF, and UreG were essential for expression of urease activity in E. coli and are suggested to play important roles in the maturation step of the urease in a co- and/or posttranslational manner. On the other hand, UreH and UreI exhibited no significant similarity to the known accessory proteins of other bacteria. However, UreH showed 23% amino acid identity to the Alcaligenes eutrophus HoxN protein, a high-affinity nickel transporter.  相似文献   

9.
The genes for Klebsiella aerogenes (K. pneumoniae) urease were cloned and the protein was overexpressed (up to 18% of total protein consisted of this enzyme) in several hosts. The small size of the DNA encoding urease (3.5 kb), the restriction map, and the regulation of enzyme expression directed by the recombinant plasmid are distinct from other cloned ureases. Nickel concentration did not affect urease gene expression, as demonstrated by the high levels of apoenzyme measured in cells grown in nickel-free media. However, nickel was required for urease activity. The overproducing recombinant strain was used for immunogold electron microscopic localization studies to demonstrate that urease is a cytoplasmic enzyme.  相似文献   

10.
11.
The urease genes from Staphylococcus xylosus C2a, Staphylococcus aureus U500, and S. aureus Newman were cloned in Staphylococcus carnosus using the plasmid vectors pCA43 and pCA44. The resulting respective recombinant plasmids pUra 402, pUraUH66, and pUra17 contained chromosomal DNA fragments with sizes of 5.6, 5.8, and 6.8 kb, respectively. Investigations on urease expression of the donor and recombinant strains in media with various nitrogen sources revealed that S. xylosus C2a produced urease constitutively at the highest specific activity. All of the recombinant strains had significantly lower urease activities than their DNA-donor strains. The nickel-dependence of urease was demonstrated in S. aureus U500 by a plate diffusion assay.  相似文献   

12.
Cloning, expression and sequencing of Helicobacter felis urease genes   总被引:9,自引:0,他引:9  
Urease genes from Helicobacter felis were cloned and expressed in Escherichia coli cells. A genomic bank of Sau3A-digested H. felis chromosomal DNA was created using a cosmid vector. Cosmid clones were screened for urease activity following subculture on a nitrogen-limiting medium. Subcloning of DNA from an urease-positive cosmid cione led to the construction of plLL205 (9.5 kb) which conferred a urease activity of 1.2±0.5 μmole urea min-1 mg-1 bacterial protein to E. coli HB101 bacteria grown on a nitrogen-limiting medium. Random mutagenesis using a MiniTn3-Km transposable element permitted the identification of three DNA regions on plLL205 which were necessary for the expression of an urease-positive phenotype in E. coii clones. To localize the putative structural genes of H. felis on plLL205, extracts of clones harbouring the mutated copies of the plasmid were analysed by Western blotting with anti-H. felis rabbit serum. One mutant cione did not synthesize the putative UreB subunit of H. felis urease and it was postulated that the transposable element had disrupted the corresponding structural gene. By sequencing the DNA region adjacent to the transposon insertion site two open reading frames, designated ureA and ureB, were identified. The polypeptides encoded by these genes had caicuiated moiecuiar masses of 26 074 and 61 663 Da, respectively, and shared 73.5% and 88.2% identity with the corresponding gene products of Helicobacter pylori urease.  相似文献   

13.
14.
15.
Moderate levels of urease activity (ca. 300 mU mg(-1)) were detected in Rhizobium leguminosarum bv. viciae UPM791 vegetative cells. This activity did not require urea for induction and was partially repressed by the addition of ammonium into the medium. Lower levels of urease activity (ca. 100 mU mg(-1)) were detected also in pea bacteroids. A DNA region of ca. 9 kb containing the urease structural genes ( ureA, ureB and ureC), accessory genes ( ureD, ureE, ureF, and ureG), and five additional ORFs ( orf83, orf135, orf207, orf223, and orf287) encoding proteins of unknown function was sequenced. Three of these ORFs ( orf83, orf135 and orf207) have a homologous counterpart in a gene cluster from Sinorhizobium meliloti, reported to be involved in urease and hydrogenase activities. R. leguminosarum mutant strains carrying Tn 5 insertions within this region exhibited a urease-negative phenotype, but induced wild-type levels of hydrogenase and nitrogenase activities in bacteroids. orf287 encodes a potential transmembrane protein with a C-terminal GGDEF domain. A mutant affected in orf287 exhibited normal levels of urease activity in culture cells. Experiments aimed at cross-complementing Ni-binding proteins required for urease and hydrogenase synthesis (UreE and HypB, respectively) indicated that these two proteins are not functionally interchangeable in R. leguminosarum.  相似文献   

16.
17.
18.
Helicobacter pylori urease requires nickel ions in the enzyme active site for catalytic activity. Nickel ions must, therefore, be actively acquired by the bacterium. NixA (high-affinity nickel transport protein)-deficient mutants of H. pylori retain significant urease activity, suggesting the presence of alternate nickel transporters. Analysis of the nucleotide sequence of the H. pylori genome revealed a homolog of NikD, a component of an ATP-dependent nickel transport system in Escherichia coli. Based on this sequence, a 378-bp DNA fragment was PCR amplified from H. pylori genomic DNA and used as a probe to identify an H. pylori lambda ZAPII genomic library clone that carried these sequences. Four open reading frames of 621, 273, 984, and 642 bp (abcABCD) were revealed by sequencing and predicted polypeptides of 22.7, 9.9, 36.6, and 22.8 kDa, respectively. The 36.6-kDa polypeptide (AbcC) has significant homology (56% amino acid sequence identity) to an E. coli ATP-binding protein component of an ABC transport system, while none of the other putative proteins are significantly homologous to polypeptides in the available databases. To determine the possible contribution of these genes to urease activity, abcC and abcD were each insertionally inactivated with a kanamycin resistance (aphA) cassette and allelic exchange mutants of each gene were constructed in H. pylori UMAB41. Mutation of abcD resulted in an 88% decrease in urease activity to 27 +/- 31 mumol of NH3/min/mg of protein (P < 0.0001), and a double mutant of nixA and abcC resulted in the near abolishment of urease activity (1.1 +/- 1.4 mumol of NH3/min/mg of protein in the double mutant versus 228 +/- 92 mumol of NH3/min/mg of protein in the parent [P < 0.0001]). Synthesis of urease apoenzyme, however, was unaffected by mutations in any of the abc genes. We conclude that the abc gene cluster, in addition to nixA, is involved in production of a catalytically active urease.  相似文献   

19.
Chromosomal DNA fragments from a uropathogenic isolate of Proteus mirabilis were inserted into the cosmid vector pHC79 to construct a genomic library in Escherichia coli HB101. A urease-positive recombinant cosmid, designated pSKW1, was recovered. Sequential recombinant manipulation of pSKW1 yielded a 10.2-kilobase plasmid, designated pSKW4, which encoded three urease isozymes with electrophoretic mobilities identical to those of the donor P. mirabilis strain. Plasmid pSKW4 gene sequences encode seven proteins designated 68K (apparent molecular weight, of 68,000), 28K, 25K, 22.5K, 18.5K, 7.5K, and 5.2K within the limits of the urease gene complex. Insertion mutations in genes encoding the 68K, 28K, 25K, 22.5K, 7.5K, and 5.2K proteins resulted in complete or partial (22.5K) loss of urease activity. There was no reduction in urease activity when the gene encoding the 18.5K protein was inactivated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号