首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The poliovirus genome-linked protein (VPg) has been subjected to radiochemical microsequence analysis. Sequence studies of virion RNA by a modification of Sanger's dideoxy method have revealed a base sequence corresponding to the amino acid analysis. This result proves that VPg is virus-encoded. The RNA sequence has allowed us to predict the total amino acid sequence of VPg and part of its precursor. VPg is, at most, 27 amino acids long. It maps within the 3' terminal segment of the viral genome that encodes the precursor polypeptide NCVP1b for the virus-specific RNA polymerase NCVP4.  相似文献   

2.
Mutational analysis of the genome-linked protein VPg of poliovirus.   总被引:16,自引:13,他引:3       下载免费PDF全文
Using a mutagenesis cartridge (R. J. Kuhn, H. Tada, M. F. Ypma-Wong, J. J. Dunn, B. L. Semler, and E. Wimmer, Proc. Natl. Acad. Sci. USA 85:519-523, 1988), we have generated single and multiple amino acid replacement mutants, as well as a single amino acid insertion mutant in the genome-linked protein VPg of poliovirus. Moreover, we constructed three different 5-amino-acid insertion mutants that map close to the C terminus of 3A, a viral polypeptide whose coding sequence is adjacent to VPg. Transfection of HeLa cells with RNA synthesized in vitro was used to test the effect of the mutation on viral proliferation. Mutations were either lethal or nonlethal. A temperature-sensitive phenotype was not observed. The arginine at position 17 of VPg could not be exchanged with any other amino acid without loss of viability, whereas the lysine at position 20, an amino acid conserved among all known polioviruses, coxsackieviruses, and echoviruses, was replaceable with several neutral amino acids and even with glutamic acid. Replacement of poliovirus VPg with echovirus 9 VPg yielded viable virus with impaired growth properties. Our results suggest considerable flexibility in the amino acid sequence of a functional VPg. All insertions in polypeptide 3A proved to be lethal. In vitro translation of mutated viral RNAs gave patterns of proteolytic processing that in some cases was aberrant, even though the mutation was nonlethal.  相似文献   

3.
A synthetic nonapeptide corresponding to the N-terminal sequence of poliovirus genome-linked protein (VPg) was linked to bovine serum albumin and used to raise antibodies in rabbits. The antipeptide antibodies specifically precipitated the nonapeptide, native VPg, and VPg-linked poliovirion RNA. The antipeptide antibodies inhibited host factor-stimulated, poliovirus replicase-catalyzed in vitro synthesis of full-length (35S) RNA in response to virion RNA. Oligouridylic acid-stimulated RNA synthesis was not affected by the antipeptide antibodies. Preincubation of the antibodies with excess nonapeptide reversed the antipeptide antibody-mediated inhibition of host factor-stimulated RNA synthesis by the poliovirus replicase. A role for VPg in the in vitro replication of poliovirus RNA genome is discussed.  相似文献   

4.
The nucleotide sequence corresponding to the P3 region of the hepatitis A virus (HAV) polyprotein genome was determined from cloned cDNA and translated into an amino acid sequence. Comparison of the amino acid sequences of the genome-linked proteins (VPgs) of other picornaviruses with the predicted amino acid sequence of HAV was used to locate the primary structure of a putative VPg within the genome of HAV. The sequence of HAV VPg, like those of other picornaviral VPg molecules, contains a tyrosine residue as a potential binding site for HAV RNA in position 3 from its N terminus. The potential cleavage sites to generate VPg from a putative HAV polyprotein are between glutamic acid and glycine at the N terminus and glutamic acid and serine or glutamine and serine at the C terminus. A synthetic peptide corresponding to 10 amino acids of the predicted C terminus of HAV VPg induced anti-peptide antibodies in rabbits when it was conjugated to thyroglobulin as a carrier. These antibodies were specific for the peptide and precipitated VPg, linked to HAV RNA, from purified HAV and from lysates of HAV-infected cells. The precipitation reaction was blocked by the synthetic peptide (free in solution or coupled to carrier proteins) and prevented by pretreatment of VPg RNA with protease. Thus, our predicted amino acid sequence is colinear with the nucleotide sequence of the VPg gene in the HAV genome. From our results we concluded that HAV has the typical organization of picornavirus genes in this part of its genome. Similarity among hydrophobicity patterns of amino acid sequences of different picornaviral VPgs was revealed in hydropathy plots. Thus, the VPg of HAV appears to be closely related to VPg1 and VPg2 of foot-and-mouth disease virus. In contrast, HAV VPg has a unique isoelectric point (pI = 7.15) among the picornavirus VPgs.  相似文献   

5.
Protein priming of viral RNA synthesis plays an essential role in the replication of picornavirus RNA. Both poliovirus and coxsackievirus encode a small polypeptide, VPg, which serves as a primer for addition of the first nucleotide during synthesis of both positive and negative strands. This study examined the effects on the VPg uridylylation reaction of the RNA template sequence, the origin of VPg (coxsackievirus or poliovirus), the origin of 3D polymerase (coxsackievirus or poliovirus), the presence and origin of interacting protein 3CD, and the introduction of mutations at specific regions in the poliovirus 3D polymerase. Substantial effects associated with VPg origin were traced to differences in VPg-polymerase interactions. The effects of 3CD proteins and mutations at polymerase-polymerase intermolecular Interface I were most consistent with allosteric effects on the catalytic 3D polymerase molecule. In conclusion, the efficiency and specificity of VPg uridylylation by picornavirus polymerases is greatly influenced by allosteric effects of ligand binding that are likely to be relevant during the viral replicative cycle.  相似文献   

6.
Using nuclease Bal31, deletions were generated within the poliovirus type 1 cDNA sequences, coding for capsid polypeptide VP1, within plasmid pCW119. The fusion proteins expressed in Escherichia coli by the deleted plasmids reacted with rabbit immune sera directed against poliovirus capsid polypeptide VP1 (alpha VP1 antibodies). They also reacted with a poliovirus type 1 neutralizing monoclonal antibody C3, but reactivity was lost when the deletion extended up to VP1 amino acids 90-104. Computer analysis of the protein revealed a high local density of hydrophilic amino acid residues in the region of VP1 amino acids 93-103. A peptide representing the sequence of this region was chemically synthesized. Once coupled to keyhole limpet hemocyanin, this peptide was specifically immunoprecipitated by C3 antibodies. The peptide also inhibited the neutralization of poliovirus type 1 by C3 antibodies. We thus conclude that the neutralization epitope recognized by C3 is located within the region of amino acids 93-104 of capsid polypeptide VP1.  相似文献   

7.
Two forms of VPg on poliovirus RNAs   总被引:1,自引:1,他引:0       下载免费PDF全文
The protein (VPg) linked to the 5' termini of poliovirus RNAs resolved into two species when subjected to non-equilibrium electrofocusing. The differently charged forms of VPg were not due to protein phosphorylation nor to variability of the number of phosphate residues associated with the nucleotide moiety remaining after RNase digestion of the nucleoprotein. Single-stranded viral RNA isolated from mature virions contained predominantly the more basic form of VPg, whereas unpackaged single-stranded RNa remaining in cells at the end of the virus replication cycle contained predominantly the more acidic form of VPg. Replicative-form (RF) molecules also contained both species of VPg, with the more acidic form representing the major species. Both plus and minus RNA strands in RF had similar VPg compositions; however, there appeared to be a strongly selective loss of VPg from only the minus strand in RF, particularly at late times postinfection.  相似文献   

8.
Q Reuer  R J Kuhn    E Wimmer 《Journal of virology》1990,64(6):2967-2975
Viral RNA synthesis was assayed in HeLa cells transfected with nonviable poliovirus RNA mutated in the genome-linked protein VPg-coding region. The transfecting RNA was transcribed in vitro from full-length poliovirus type 1 (Mahoney) cDNA containing a VPg mutagenesis cartridge. Hybridization experiments using ribonucleotide probes specific for the 3' end of positive- and negative-sense poliovirus RNA indicated that all mutant RNAs encoding a linking tyrosine in position 3 or 4 of VPg were replicated even though no virus was produced. VPg, but no VPg precursor, was found to be linked to the 5' end of the newly synthesized RNA. Encapsidated mutant RNAs were not found in transfected-cell lysates. After extended maintenance of transfected HeLa cells, a viable revertant of one of the nonviable RNAs was recovered; the revertant lost the lethal lesion in VPg by restoring the wild-type amino acid, but it retained all other nucleotide changes introduced during construction of the mutagenesis cartridge. Mutant RNA encoding phenylalanine or serine rather than tyrosine, the linking amino acid in VPg, was not replicated in transfected cells. A chimeric mutant containing the VPg-coding region of coxsackievirus within the poliovirus genome was viable but displayed impaired multiplication. A poliovirus-coxsackievirus chimera lacking a linking tyrosine in VPg was nonviable and replication-negative. The results indicate that a linkage-competent VPg is necessary for poliovirus RNA synthesis to occur but that a step in poliovirus replication other than initiation of RNA synthesis can be interrupted by lethal mutations in VPg.  相似文献   

9.
Using a rapid phenol extraction assay, an enzyme was purified from uninfected HeLa cells that can cleave the 5'-terminal protein (VPg) from poliovirus RNA. Both cytoplasmic and nuclear extracts had enzymes with similar behavior. A polypeptide of molecular weight 27,000 was the major one present in the purified preparation. Assuming that this protein is the enzyme, a very low turnover number was calculated for it. The purified enzyme would cleave the tyrosine-phosphate bond linking VPg to poliovirus RNA with minimal degradation of the RNA or of VPg. If the RNA was first treated with proteinase K to degrade VPg, leaving a small peptide on the RNA, this peptide could also be removed by the enzyme. If the RNA was degraded with T1 RNase, leaving VPg attached to a nonanucleotide, the enzyme still would cleave off VPg, although incompletely. If the RNA was degraded completely, leaving either pUp or pU attached to VPg, the enzyme would not remove the nucleotides from the protein. Thus, for the enzyme to be active requires some length of polynucleotide attached to the protein but only a short peptide need be present for the enzyme to act.  相似文献   

10.
Computer analyses have revealed sequence homology between two non-structural proteins encoded by cowpea mosaic virus (CPMV), and corresponding proteins encoded by two picornaviruses, poliovirus and foot-and-mouth disease virus. A region of 535 amino acids in the 87-K polypeptide from CPMV was found to be homologous to the RNA-dependent RNA polymerases from both picornaviruses, the best matches being found where the picornaviral proteins most resemble each other. Additionally, the 58-K polypeptide from CPMV and polypeptide P2-X from poliovirus contain a conserved region of 143 amino acids. Based on the homology observed, a genetic map of the CPMV genome has been constructed in which the 87-K polypeptide represents the core polymerase domain of the CPMV replicase. These results have implications for the evolution of RNA viruses, and mechanisms are discussed which may explain the existence of homology between picornaviruses (animal viruses with single genomic RNAs) and comoviruses (plant viruses with two genomic RNAs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号