首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
核因子κB的跨核膜转运及其调控机制   总被引:4,自引:1,他引:3  
核因子kappaB(NF-κB)是一组重要的转录调节因子,当细胞处于静息状态时,它与抑制蛋白IκB结合以非活性的形式存在于胞浆中.当细胞受到多种外界信号刺激,NF-κB、IκB分别在核定位信号(NLS)的介导下经核孔复合物(NPC)转运入核.在核内,NF-κB与IκB再次结合成复合物,在核转出信号(NES)介导下,经CRM1依赖的途迳出核.该过程是能量依赖的主动转运过程,涉及小分子Ran蛋白及多种可溶性因子.  相似文献   

2.
逆向囊泡转运复合物Retromer主要负责介导货物蛋白从内体向反式高尔基体或细胞表面逆向转运,是细胞内囊泡转运分选系统的重要成员.Retromer复合物主要含有两个亚复合体:货物选择复合体VPS26-VPS29-VPS35和膜结合复合体SNX-BAR.本文着重综述了Retromer复合物和SNX蛋白家族参与囊泡转运过程的分子机制以及它们在发育中对Wnt信号的调控作用;并讨论了Retromer复合物在细胞极性形成、细胞凋亡、神经元信号传递中的重要作用;以及该复合物与帕金森和阿尔茨海默病等退行性疾病之间的关系.  相似文献   

3.
A型激酶锚定蛋白(A-kinase anchoring proteins,AKAPs)是一类结构不同而功能相关的蛋白家族,其主要功能是将cAMP依赖性蛋白激酶A(PKA)锚定于特定的亚细胞结构.PKA是第二信使cAMP的主要效应器,而AKAPs在靶向定位和调节PKA介导的磷酸化事件方面扮演重要角色. AKAPs更为重要的功能是与多种信号分子形成信号复合物,从时间和空间上整合cAMP-PKA和其他信号途径.本文将对AKAPs及其信号复合物的结构特点和参与细胞信号转导的功能机制及其研究现状进行概述.  相似文献   

4.
髓样分化蛋白-2在识别和转导内毒素信号中的作用   总被引:1,自引:0,他引:1  
脂多糖(LPS)通过TLR4介导细胞炎症反应.研究表明,髓样分化蛋白-2(MD-2)通过与TLR4形成复合物参与LPS诱导的细胞信号过程.TLR4/MD-2复合物中的MD-2结合LPS后,引起TLR4低聚化,进而激发下游信号.MD-2合成后,大部分在内质网/高尔基体和TLR4结合,然后以TLR4/MD-2复合物的形式在细胞表面表达.这既能调节TLR4的胞内分布,又能辅助TLR4识别LPS.还有一部分MD-2释放到血浆中,形成可溶性的MD-2(sMD-2).sMD-2在CD14参与下,能结合血浆中的LPS,形成LPS-sMD-2复合物从而辅助只表达TLR4而不表达MD-2的细胞识别LPS,但过度表达的sMD-2又能抑制LPS信号.MD-2在TLR4介导的内毒素识别和信号转导过程中发挥了重要的调控作用.  相似文献   

5.
封面故事     
<正>肿瘤坏死因子受体超家族(TNFRSF)的成员是机体非常重要的调节分子,参与细胞的生长、分化、凋亡与存活等过程。已有研究表明,TNFRSF家族成员可以通过在细胞质膜和内吞体上结合不同的接头分子,启动截然不同的下游信号通路。例如,TNF结合细胞膜表面的TNFR1,能够招募TRADD,RIP1和TRAF2组成信号复合物Ⅰ,激活经典的NF-κB通路;而内化的TNF-TNFR1复合物则能够招募TRADD、FADD和Caspase-8组成信号复合物Ⅱ,即招募死亡诱导信号复合物介导细胞凋亡。死亡受体6(DR6)属于肿瘤坏死因子受体超家族的一员,它在免疫系统和神经系统中发挥着重要功  相似文献   

6.
NOK能激活包含JAK-STAT信号通路在内的多种促细胞有丝分裂信号通路.研究发现,在人胚肾细胞(HEK293T)中,NOK与STAT3具有直接的相互作用.进一步的实验表明,NOK能同STAT3蛋白除螺旋结构域及c端结构域外的其他4个结构域发生相互作用,而NOK的胞内区则介导了NOK同STAT3的相互作用.同时,免疫共沉淀实验显示,NOK能与JAK2发生相互作用.重要的是,共同表达NOK与JAK2蛋白对STAT3信号通路能产生一种非常显著的协同激活作用,但当共同表达NOK和JAK2的激酶活性缺失突变体时,并不产生这种协同激活效应.综上,实验结果显示,NOK可能同STAT3和JAK2形成一个复合物,通过JAK2依赖性方式激活STAT3信号通路.  相似文献   

7.
除了经典的基因组效应以外,雌激素还可以通过细胞内信号转导途径在几分钟甚至是几秒钟内产生快速生物学效应,被称为雌激素的非基因组效应.这种雌激素的非基因组效应与基因组效应一样,也存在着组织、细胞的特异性.本文将对雌激素膜受体存在的依据、以膜ER为核心的多分子复合物的特性及其介导的信号通路以及雌激素快速生物学效应的组织/细胞特异性作一综述.  相似文献   

8.
IL-6受体结构与功能的研究进展   总被引:1,自引:0,他引:1  
IL-6是一个多功能的细胞因子,其生物学作用在很大程度上受IL-6受体(IL-6R)结构和功能的影响.IL-6R由两条多肽链组成,即配体结合链gp80和信号传导链gp130.它们在结构和功能上既有分工又有合作.两种亚基组成的高亲和力IL-6R是介导细胞效应所必需的.IL-6Rα中的造血功能区属于造血因子受体超家族成员,它决定着结合IL-6的能力.然而gp130则是多种细胞因子共用的信号传递分子,其胞内段含有与酪氨酸激酶活化有关的保守成分.IL-6+IL-6R复合物通过诱导gp130的聚合来活化胞内的多种激酶分子和转录因子并最终导致有关基因的表达.  相似文献   

9.
炎性体是胞液中感受危险信号、启动介导下游免疫防御或细胞死亡(pyroptosis)的多分子复合物,是细胞内天然免疫的重要受承信号转导的中介体.炎性体识别流感病毒后诱导先天免疫反应甚至pyroptosis样细胞死亡.流感病毒高尔基体表达的M2蛋白和P2X7、ATP、ROS在炎性体的调节过程中发挥了重要作用,微生物也可以通过激活炎性体调节呼吸道粘膜免疫.炎性体的提出为最优疫苗的设计提供了新的思路.  相似文献   

10.
Eph-ephrin介导反向信号传递的研究进展   总被引:1,自引:0,他引:1  
双向信号传递是细胞间通讯领域中新近阐明的机制,酪氨酸激酶受体-配体(Eph-ephrin)介导的双向信号传递是此机制中的一个重要代表.Eph酪氨酸激酶家族受体及其配体ephrin家族成员是在神经发育、血管新生等方面起重要作用的分子,通过Eph向细胞内传递的信号称为正向信号,通过其配体ephrin的信号称为反向信号.Ephrin家族又可根据分子结构分为2个亚家族,其中ephrinB为跨膜蛋白,可通过酪氨酸磷酸化依赖和PDZ结合结构域介导2种方式向胞内传递反向信号,活化FAK、JNK、Wnt等信号通路,ephrinA为糖基磷脂酰肌醇锚定蛋白,也具有反向信号传递功能.  相似文献   

11.
12.
13.
14.
Chaperones and scaffold proteins are key elements involved in controlling the assembly of molecular complexes required for coordinated signal transduction. Here we describe morgana and melusin, two phylogenetically conserved chaperones that cooperate with Hsp90 and regulate signal transduction in important physiopathological processes. While morgana is ubiquitously expressed, melusin expression is restricted to striated muscles. Despite high sequence homology, the two chaperones have distinct functions. Morgana controls genomic stability by regulating the centrosome cycle via ROCKII kinase. Melusin, however, organizes ERK signal transduction in cardiomyocytes and regulates cardiac compensatory hypertrophy in response to different stress stimuli.  相似文献   

15.
Cell proliferation in response to growth factors is mediated by specific high affinity receptors. Ligand-binding by receptors of the protein tyrosine kinase family results in the stimulation of several intracellular signal transduction pathways. Key signalling enzymes are recruited to the plasma membrane through the formation of stable complexes with activated receptors. These interactions are mediated by the conserved, non-catalytic SH2 domains present in the signalling molecules, which bind with high affinity and specificity to tyrosine-phosphorylated sequences on the receptors. The assembly of enzyme complexes is emerging as a major mechanism of signal transduction and may regulate the pleiotropic effects of growth factors.  相似文献   

16.
Covalent modification cycles are basic units and building blocks of posttranslational modification and cellular signal transduction. We systematically explore different spatial aspects of signal transduction in covalent modification cycles by starting with a basic temporal cycle as a reference and focusing on steady-state signal transduction. We consider, in turn, the effect of diffusion on spatial signal transduction, spatial analogs of ultrasensitive behavior, and the interplay between enzyme localization and substrate diffusion. Our analysis reveals the need to explicitly account for kinetics and diffusional transport (and localization) of enzymes, substrates, and complexes. It demonstrates a complex and subtle interplay between spatial heterogeneity, diffusion, and localization. Overall, examining the spatial dimension of covalent modification reveals that 1), there are important differences between spatial and temporal signal transduction even in this cycle; and 2), spatial aspects may play a substantial role in affecting and distorting information transfer in modules/networks that are usually studied in purely temporal terms. This has important implications for the systematic understanding of signaling in covalent modification cycles, pathways, and networks in multiple cellular contexts.  相似文献   

17.
Chemotaxis in Escherichia coli is one of the most thoroughly studied model systems for signal transduction. Receptor-kinase complexes, organized in clusters at the cell poles, sense chemoeffector stimuli and transmit signals to flagellar motors by phosphorylation of a diffusible response regulator protein. Despite the apparent simplicity of the signal transduction pathway, the high sensitivity, wide dynamic range and integration of multiple stimuli of this pathway remain unexplained. Recent advances in computer modeling and in quantitative experimental analysis suggest that cooperative protein interactions in receptor clusters play a crucial role in the signal processing during bacterial chemotaxis.  相似文献   

18.
Covalent modification cycles are basic units and building blocks of posttranslational modification and cellular signal transduction. We systematically explore different spatial aspects of signal transduction in covalent modification cycles by starting with a basic temporal cycle as a reference and focusing on steady-state signal transduction. We consider, in turn, the effect of diffusion on spatial signal transduction, spatial analogs of ultrasensitive behavior, and the interplay between enzyme localization and substrate diffusion. Our analysis reveals the need to explicitly account for kinetics and diffusional transport (and localization) of enzymes, substrates, and complexes. It demonstrates a complex and subtle interplay between spatial heterogeneity, diffusion, and localization. Overall, examining the spatial dimension of covalent modification reveals that 1), there are important differences between spatial and temporal signal transduction even in this cycle; and 2), spatial aspects may play a substantial role in affecting and distorting information transfer in modules/networks that are usually studied in purely temporal terms. This has important implications for the systematic understanding of signaling in covalent modification cycles, pathways, and networks in multiple cellular contexts.  相似文献   

19.
A truncated form of the type 1 fibroblast growth factor receptor (FGFR1) lacking most of its cytoplasmic domain was tested for its ability to inhibit signal transduction by each of three different wild-type FGFRs (FGFR1, 2, and 3). When the truncated FGFR1 was expressed in Xenopus oocytes in excess of each wild-type FGFR, mobilization of intracellular calcium mediated by the wild-type FGFRs was completely blocked. The truncated FGFR did not inhibit signal transduction by the co-expressed platelet-derived growth factor beta-receptor. A form of truncated FGFR1 which lacked the first immunoglobulin-like domain also inhibited signal transduction by wild-type FGFRs. Truncated FGFR formed complexes with wild-type FGFR in the presence of basic FGF in intact cells. These observations were consistent with the hypothesis that the truncated FGFR interacted with wild-type FGFRs to form nonfunctional heterodimers, thus eliminating the signaling by the wild-type FGFRs. The observation that signaling by multiple types of FGFR can be blocked by a single type of truncated FGFR suggests that the different types of FGFR can interact with each other in ligand-mediated complexes. These findings provide a molecular basis for inhibiting the actions of FGFs in vivo.  相似文献   

20.
Transforming growth factor-β (TGFβ) superfamily members exert their diverse biological effects through their interaction with heteromeric receptor complexes of transmembrane serine/threonine kinases. Both components of the receptor complex, known as receptor I and receptor II are essential for signal transduction. The composition of these complexes can vary significantly due to the promiscuous nature of the ligands and the receptors, and this diversity of interactions can yield a variety of biological responses. Several receptor interacting proteins and potential mediators of signal transduction have now been identified. Recent advances, particularly in our understanding of the function of Mothers against dpp-related (MADR) proteins, are providing new insights into how the TGFβ superfamily signals its diverse biological activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号