首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 327 毫秒
1.
Plasma-membrane-bound nitrate reductase (PM-NR) is located in roots and leaves of tobacco (Nicotiana tabacum L. cv. Samsun) and reduces nitrate with NADH as electron donor. When plasma membranes were prepared under specific protecting conditions, a PM-NR of roots was detected that accepts electrons from succinate to reduce nitrate. Comparison between the succinate dehydrogenase of mitochondria and the succinate-oxidising PM-NR of roots indicated that they are two different enzymes. Partial purification of the nitrate reductase forms by anion-exchange chromatography indicated that succinate and NADH supply electrons to the same plasma-membrane-bound protein. Received: 27 March 1997 / Accepted: 9 April 1997  相似文献   

2.
Fraser PD  Schuch W  Bramley PM 《Planta》2000,211(3):361-369
 Phytoene synthase activity in tomato chloroplasts is membrane-associated, requiring treatment with high ionic strength buffer or mild non-ionic detergent for solubilisation. Using a combination of ammonium sulphate precipitation, cation and anion exchange, dye-ligand and hydrophobic interaction chromatography, phytoene synthase has been purified 600-fold from tomato (Lycopersicon esculentum Mill.) chloroplasts. The native molecular mass of the enzyme was 43 kDa, with an isoelectric point of 4.6. Although phytoene synthase was functional in a monomeric state, under optimal native conditions it was associated with a large (at least 200 kDa) protein complex which contained other terpenoid enzymes such as isopentenyl diphosphate isomerase and geranylgeranyl diphosphate (GGPP) synthase. Both Mn2+ and ATP, in combination, were essential for catalytic activity; their effect was stochiometric from 0.5 to 2 mM, with K m values for Mn2+, ATP and the substrate GGPP of 0.4 mM, 2.0 mM and 5 μM, respectively. The detergents Tween 60 and Triton X-100 (0.1 w/v) stimulated (5-fold) enzyme activity, but lipids (crude chloroplast lipids and phospholipids) had no such effect and could not compensate for the absence of detergent. A number of metabolites with possible regulatory effects were investigated, including β-carotene, which reduced enzyme activity in vitro some 2-fold. A comparison of phytoene synthase activity from partially purified chloroplast and chromoplast preparations indicated biochemical differences. Received: 20 January 2000 / Accepted: 16 February 2000  相似文献   

3.
We have investigated the regulation of ferredoxin–glutamate synthase (Fd-GOGAT) in leaves of barley (Hordeum vulgare L. cv. Maris Mink) at the mRNA, protein and enzyme activity levels. Studies of the changes in Fd-GOGAT during plant development showed that the activity in shoots increases rapidly after germination to reach a maximum (on a fresh-weight basis) at day 10 and then declines markedly to less than 50% of the maximal activity by day 30, this decline being correlated with an equivalent loss of Fd-GOGAT protein. Growing the plants in darkness reduced the maximum activity attained in the shoots, but did not affect the overall pattern of the changes or their timing. The activity of Fd-GOGAT increased two- to three-fold within 48 h when etiolated leaves were exposed to light, and Northern blots indicated that the induction occurred at the mRNA level. However, whilst a carbon source could at least partially substitute for light in the induction of nitrate reductase activity, no induction of Fd-GOGAT activity was seen when etiolated leaves were treated with either sucrose or glucose. Interestingly, the levels of Fd-GOGAT mRNA and activity remained high up to a period of 16 h or 72 h darkness, respectively. Compared with plants grown in N-free medium, light-grown plants supplied with nitrate had almost two-fold higher Fd-GOGAT activities and increased Fd-GOGAT mRNA levels, but nitrate had no effect on the abundance of the enzyme or its mRNA in etiolated plants, indicating that light is required for nitrate induction of barley Fd-GOGAT. Received: 23 April 1997 / Accepted: 28 May 1997  相似文献   

4.
 The nitrate reductase activity from Chlamydomonas reinhardtii was not altered when extracts were incubated with yeast 14-3-3 proteins in the presence of Mg-ATP. However, the C. reinhardtii extracts contained 14-3-3 proteins capable of inhibiting the spinach nitrate reductase, raising the question of their physiological substrates. Two C. reinhardtii proteins of about 48 and 35 kDa were eluted from 14-3-3 affinity chromatography columns and bound to 14-3-3s in overlay assays. The 48-kDa protein corresponded to the cytosolic isoform of glutamine synthetase (GS1). The GS1 was phosphorylated by a Ca2+- and calmodulin-dependent protein kinase partially purified from the alga. However, neither phosphorylation nor 14-3-3 binding seemed to change GS catalytic activity. Received: 3 February 2000 / Accepted: 6 May 2000  相似文献   

5.
Rhodothermus marinus ATCC 43812, a thermophilic bacterium isolated from marine hot springs, possesses hydrolytic activities for depolymerising substrates such as carob-galactomannan. Screening of expression libraries identified mannanase-positive clones. Subsequently, the corresponding DNA sequences were determined, eventually identifying a coding sequence specifying a 997 amino acid residue protein of 113 kDa. Analyses revealed an N-terminal domain of unknown function and a C-terminal mannanase domain of 550 amino acid residues with homology to known mannanases of glycosidase family 26. Action pattern analysis categorised the R. marinus mannanase as an endo-acting enzyme with a requirement for at least five sugar moieties for effective catalytic activity. When expressed in Escherichia coli, purified gene product with catalytic activity was mainly found as two protein fragments of 45 kDa and 50 kDa. The full-length protein of 113 kDa was only detected in crude extracts of R. marinus, while truncated protein-containing fractions of the original source resulted in a major active protein of 60 kDa. Biochemical analysis of the mannanase revealed a temperature and pH optimum of 85 °C and pH 5.4, respectively. Purified, E. coli-produced protein fragments showed high heat stability, retaining more than 70% and 25% of the initial activity after 1 h incubation at 70 °C and 90 °C, respectively. In contrast, R. marinus-derived protein retained 87% activity after 1 h at 90 °C. The enzyme hydrolysed carob-galactomannan (locust bean gum) effectively and to a smaller extent guar gum, but not yeast mannan. Received: 5 November 1999 / Received revision: 19 January 2000 / Accepted: 23 January 2000  相似文献   

6.
Becker TW  Carrayol E  Hirel B 《Planta》2000,211(6):800-806
 Mesophyll cells (MCs) and bundle-sheath cells (BSCs) of leaves of the C4 plant maize (Zea mays L.) were separated by cellulase digestion to determine the relative proportion of the glutamine synthetase (GS; EC 6.3.1.2) or the NADH-glutamate dehydrogenase (GDH; EC 1.4.1.2) isoforms in each cell type. The degree of cross-contamination between our MC and BSC preparations was checked by the analysis of marker proteins in each fraction. Nitrate reductase (EC 1.6.6.1) proteins (110 kDa) were found only in the MC fraction. In contrast, ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) proteins (160 kDa) were almost exclusively present in the BSC fraction. These results are consistent with the known intercellular distribution of nitrate reductase and Fd-GOGAT proteins in maize leaves and show that the cross-contamination between our MC and BSC fractions was very low. Proteins corresponding to cytosolic GS (GS-1) or plastidic GS (GS-2) were found in both the MC and BSC fractions. While equal levels of GS-1 (40 kDa) and GS-2 (44 kDa) polypeptides were present in the BSC fraction, the GS-1 protein level in the MC fraction was 1.8-fold higher than the GS-2 protein pool. Following separation of the GS isoforms by anion-exchange chromatography of MC or BSC soluble protein extracts, the relative GS-1 activity in the MC fraction was found to be higher than the relative GS-2 activity. In the BSC fraction, the relative GS-1 activity was very similar to the relative GS-2 activity. Two isoforms of GDH with apparent molecular weights of 41 kDa and 42 kDa, respectively, were detected in the BSC fraction of maize leaves. Both GDH isoenzymes appear to be absent from the MC fraction. In the BSCs, the level of the 42-kDa GDH isoform was 1.7-fold higher than the level of the 41-kDa GDH isoform. A possible role for GS-1 and GDH co-acting in the synthesis of glutamine for the transport of nitrogen is discussed. Received: 25 January 2000 / Accepted: 30 March 2000  相似文献   

7.
cNR, cytosolic nitrate reductase
PM-NR, plasma membrane-bound nitrate reductase

Activities of plasma membrane-bound nitrate reductase (PM-NR) and cytosolic nitrate reductase (cNR) in tobacco (Nicotiana tabacum L. cv. Samsun) are regulated differently, depending upon the nitrate supply to the culture medium (in sand culture). The cNR activity of roots was higher at low nitrate concentrations with the maximum at 5 mM nitrate supply and declined to low values beyond 5 mM . In contrast, the PM-NR activity of roots increased with higher nitrate concentrations with the maximum at 25 mM nitrate and clearly decreased only at 40 mM . This high PM-NR activity correlated with a low growth rate and might be one of the responses to excess nitrate. Internal nitrate and total nitrogen content of the tissues, however, showed a relative minimum in shoots and in roots of between 15 and 25 mM external nitrate. With declining PM-NR activities beyond 25 mM external nitrate, the nitrate content in the tissue increased indicating an inverse relationship between tissue nitrate content and root PM-NR activity. In leaves both NR activities (cNR and PM-NR) correlated with the internal nitrate content, but with a different response at low nitrate.  相似文献   

8.
The expression of nitrite reductase (NiR; EC 1.7.7.1), the second enzyme in the nitrate assimilatory pathway, is regulated by nitrate as well as by end-products of nitrate assimilation, namely, glutamine (Gln) and asparagine (Asn). Nitrate induces expression of the NiR gene. Previously, using deletion analysis of the spinach (Spinacia oleracea L.) NiR gene promoter in transgenic tobacco (Nicotiana tabacum L.) and in-vivo dimethyl sulfate footprinting, we had identified the region between −230 bp and −180 bp as being critical for nitrate inducibility of this gene. In the present study, we show that the region from +1 to +67, which forms part of its untranslated leader, is important for minimal induction in the presence of nitrate. Electrophoretic mobility shift assays reveal concentration-dependent and competitive binding of a factor in tobacco nuclear extracts to this region. In the presence of Gln or Asn, the expression of spinach NiR is repressed. This repression is observed with the full-length NiR promoter (−3100 bp) as well as with the shortest promoter (−230 bp) that gives nitrate induction, which includes the +67 bp leader sequence. The repressed expression of the gene is not the result of reduced nitrate accumulation in the presence of the nitrogen metabolites. Received: 2 December 1997 / Accepted: 20 January 1998  相似文献   

9.
A new amidohydrolase deacetylating several N-acetyl-1-phenylethylamine derivatives (R)-specifically was found in Arthrobacter aurescens AcR5b. The strain was isolated from a wet haystack by enrichment culture with (R)-N-acetyl-1-phenylethylamine as the sole carbon source. (R) and (S )-N-acetyl-1-phenylethylamine do not serve as inducers for acylase formation. By improving the growth conditions the enzyme production was increased 47-fold. The amidohydrolase was purified to homogeneity leading to a 5.2-fold increase of the specific activity with a recovery of 67%. A molecular mass of 220 kDa was estimated by gel filtration. Sodium dodecyl sulfate/polyacrylamide gel electrophorosis shows two subunits with molecular masses of 16 kDa and 89 kDa. The optimum pH and temperature were pH 8 and 50 °C, respectively. The enzyme was stable in the range of pH 7–9 and at temperatures up to 30 °C. The enzyme activity was inhibited by Cu2+, Co2+, Ni2+, and Zn2+, and this inhibition was reversed by EDTA.M Received: 20 September 1996 / Received version: 23 December 1996 / Accepted: 30 December 1996  相似文献   

10.
The enzyme oxaloacetate hydrolase (EC 3.7.1.1), which is involved in oxalate formation, was purified from Aspergillus niger. The native enzyme has a molecular mass of 360–440 kDa, and the denatured enzyme has a molecular mass of 39 kDa, as determined by gel electrophoresis. Enzyme activity is maximal at pH 7.0 and 45 °C. The fraction containing the enzyme activity contained at least five proteins. The N-terminal amino acid sequences of four of these proteins were determined. The amino acid sequences were aligned with EST sequences from A. niger, and an EST sequence that showed 100% identity to all four sequences was identified. Using this EST sequence the gene encoding oxaloacetate hydrolase (oah) was cloned by inverse PCR. It consists of an ORF of 1227 bp with two introns of 92 and 112 bp, respectively. The gene encodes a protein of 341 amino acids with a molecular mass of 37 kDa. Under the growth conditions tested, the highest oah expression was found for growth on acetate as carbon source. The gene was expressed only at pH values higher than 4.0. Received: 9 May 1999 / Accepted: 30 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号