首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
Muscle spindles from the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of genetically dystrophic mice of the dy2J/dy2J strain were compared with age-matched normal animals at neonatal ages of 1-3 weeks according to histochemical, quantitative, and ultrastructural parameters. Intrafusal fibers in both the soleus and EDL exhibited similar regional differences in myosin ATPase activity, and conformed to those noted previously in various adult species. In distal polar regions, all nuclear bag fibers resembled extrafusal fibers of the type 1 variety, whereas in capsular zones they could be divided into two subtypes. Nuclear chain fibers possessed a staining pattern similar to type 2 extrafusal fibers, and in contrast to the bag fibers they exhibited no regional variations. These features were consistently observed in both the normal and dystrophic muscles at all ages. Spindles varied only slightly in their number and distribution in the two types of muscle, and their location followed the neurovascular branching pattern in each. Irrespective of age or genotype, spindles in the soleus were more homogeneously dispersed, but those in the EDL were concentrated along the dorsal aspect of the muscle. No significant differences were noted in the total number of spindles between normal and dystrophic muscles. In addition, no dramatic differences were observed in the muscle spindle index for soleus and EDL. The first obvious disease-related changes were noted in extrafusal fibers of the soleus of 3-week-old mice, and spindles were often located close to these areas of fiber degeneration. Despite alterations in the surrounding tissue, however, spindles appeared morphologically unaltered in dystrophy. These observations indicate that intrafusal fibers of spindles in neonatal mice appear enzymatically and histologically unaffected in incipient stages of progressive muscular dystrophy.  相似文献   

2.
With the use of myosin adenosinetriphosphatase (ATPase) and immunofluorescence staining methods, the adaptive responses of intrafusal and extrafusal fibers to endurance swimming were studied in frozen sections of rat soleus (SOL) and extensor digitorum longus (EDL) muscles. Glycogen depletion confirmed muscle fatigue at the end of a standardized bout of exercise. No significant age-dependent changes in myosin isoforms were detected in any fibers. The 12-wk training increased type I fibers by 10.9% in the SOL and type IIa fibers in the EDL by 16.6%. In trained muscle sections, both staining methods identified a permuted chain fiber, expressed the same as the myosin isoform in the bag2 fiber. However, no exercise-induced change of myosin isoform profile was found in the bag1 and bag2 fibers. Myosin ATPase (and immunofluorescence) staining showed the percentage of permuted chain fibers increased from 0 to 6.7% (5.6%) after 6 wk of training and to 19.2% (14.1%) after 12 wk of training and that it was still at 6.1% (4.2%) 10 wks after training. A novel myosin isoform may thus be expressed in nuclear chain fibers by repetitive recruitment of muscle spindles.  相似文献   

3.
J Kucera  J M Walro 《Histochemistry》1990,93(6):567-580
The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

4.
Summary Extensor digitorum longus muscles of male adult White New Zealand rabbits were indirectly stimulated at 10 Hz for 12 h daily for periods ranging up to 28 days. After four weeks the stimulated muscles showed a nearly uniform profile of high succinate dehydrogenase activity and, when incubated after acid preincubation for myofibrillar adenosine triphosphatase, displayed more dark- and intermediate-staining fibers than their contralateral counterparts. Muscles stimulated from between 6 to 21 days revealed degenerative foci and phagocytosis of degenerated fibers. These fibers were mostly of the fast-twitch, glycolytic type. Small myofibers, which often contained central nuclei, and structures identified as myoblasts or myotubes, reacted with a monoclonal antibody prepared against embryonic myosin heavy chains. The data suggest that under the employed conditions the fast to slow conversion of chronically stimulated fast-twitch rabbit muscle is not exclusively caused by adult fiber transformation, but results in part from the substitution of fast-twitch glycolytic fibers with newly formed fibers that have a high oxidative profile.  相似文献   

5.
Sections of chicken tibialis anterior and extensor digitorium longus muscles were incubated with monoclonal antibodies against myosin heavy chains (MHC). Ventricular myosin was present in developing secondary intrafusal myotubes when they were first recognized at embryonic days (E) 13–14, and in developing extrafusal fibers prior to that date. The reaction in intrafusal fibers began to fade at E17, and in 2-week-old postnatal and older muscles the isoform was no longer recognized. Only those intrafusal fibers which also reacted with a monoclonal antibody against atrial and slow myosin contained ventricular MHC. Intrafusal myotubes which developed into fast fibers did not express the isoform. Hence, based on the presence or absence of ventricular MHC, two lineages of intrafusal fiber are evident early in development. Strong immunostaining for ventricular MHC was observed in primary extrafusal myotubes at E10, but the isoform was already downregulated at E14, when secondary intrafusal myotubes were still forming and expressed ventricular MHC. Only light to moderate and transient immunostaining was observed in coexisting secondary extrafusal myotubes, most of which developed into fast fibers. Thus at the time when nascent muscle spindles are first recognized, differences in MHC profiles already exist between prospective intrafusal and extrafusal fibers. If intrafusal fibers stem from a pool of primordial muscle cells, which is common to intrafusal and extrafusal myotubes, they diverged from it some time prior to E13.This paper is dedicated to Prof. D. Pette, Konstanz, on the occasion of his 60th birthday  相似文献   

6.
Summary The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

7.
The postnatal development of extrafusal fibers in the slow-twitch soleus muscle of genetically dystrophic C57BL/6J dy2J/dy2J mice and their normal age-matched controls was investigated by histochemical and quantitative methods at selected ages of 4, 8, 12, and 32 weeks. The majority of fibers in the soleus consisted of two kinds, fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO), according to reactions for alkaline-stable and acid-stable myosin ATPase and the oxidative enzyme, NADH-tetrazolium reductase. A minor population of fibers, stable for both alkaline- and acid-preincubated ATPase, but variable in staining intensity for NADH-TR, were designated "atypical" fibers. With age, the normal soleus exhibited a gradual increase in the number and proportion of SO fibers and a reciprocal, steady decline in the percentage of FOG fibers. Atypical fibers were numerous at 4 weeks, but were substantially diminished at later ages. Since total extrafusal fiber number remained relatively constant between the periods examined, this change in relative proportions reflects an adaptive transformation of fiber types characteristic of normal postnatal growth. A striking alteration in the number and distribution of fiber types was associated with the dystrophic soleus. At 4 weeks an 18% reduction in total fiber number was already noted. Subsequently, by 32 weeks a further 22% diminution in overall fiber number had occurred. With age, the absolute number and proportion of dystrophic SO fibers were drastically reduced. In contrast, the percentage of dystrophic FOG fibers increased significantly while their absolute numbers between 4 and 32 weeks remained relatively constant. Atypical fibers in the dystrophic solei were found in elevated numbers at all age groups, particularly at 12 weeks. They may, in part, represent attempts at regeneration or an intermediate stage in fiber-type transformation. Microscopically, both of the major fiber types appeared affected, albeit differently, by the dystrophic process. We suggest that a failure or retardation in the normal postnatal conversion of fiber types within the soleus muscle occurs in this murine model for muscular dystrophy.  相似文献   

8.
Chicken leg muscles were examined to calculate the percentages of slow myosin heavy chain (MHC)-positive fibers in spindles and in adjacent extrafusal fascicles, and to clarify how the encapsulated portions of muscle spindles are positioned relative to these fascicles. Unlike mammals, in chicken leg muscles slow-twitch MHC and slow-tonic MHC are expressed in intrafusal fibers and in extrafusal fibers, suggesting a close developmental connection between the two fiber populations. In 8-week-old muscles the proportions of slow MHC-positive extrafusal fibers that ringed muscle spindles ranged from 0-100%. In contrast, proportions of slow MHC-positive intrafusal fibers in spindles ranged from 0-57%. Similar proportions in fiber type composition between intrafusal fibers and surrounding extrafusal fibers were apparent at embryonic days 15 and 16, demonstrating early divergence of extrafusal and intrafusal fibers. Muscle spindles were rarely located within single fascicles. Instead, they were commonly placed where several fascicles converged. The frequent extrafascicular location of spindles suggests migration of intrafusal myoblasts from developing clusters of extrafusal fibers toward the interstitium, perhaps along a neurotrophic gradient established by sensory axons that are advancing in the connective tissue matrix that separates adjoining fascicles.  相似文献   

9.
The effect of growth on the capillarity and fiber type composition of the diaphragm, soleus and extensor digitorum longus (EDL) muscles of rats weighing between 55 and 330 g have been studied. Muscle samples obtained from the anesthetized rat were rapidly frozen and sliced transversely in a cryostat. The sections were stained histochemically by the SDH method and the myosin ATPase method after preincubation at pH 4.3 to typify fibers (FG, FOG and SO fibers). To visualize capillaries, the myosin ATPase method after preincubation at pH 4.0 was used. The percentage of FOG fibers decreased in all muscles with growth. While the FG and SO fibers increased in the diaphragm, SO fibers increased in the soleus, and FG fibers increased in the EDL. The capillary density showed a hyperbolic decrease with growth in all muscles, while the number of capillaries around each fiber increased in all muscles with growth. It is concluded that growth causes the changing properties of the motoneurons and the new capillary formation in the diaphragm muscle, as well as the soleus and EDL muscles.  相似文献   

10.
Myosin isozymes and their fiber distribution were studied during regeneration of the soleus muscle of young adult (4-6 week old) rats. Muscle degeneration and regeneration were induced by a single subcutaneous injection of a snake toxin, notexin. If reinnervation of the regenerating muscle was allowed to occur (functional innervation nearly complete by 7 days), then fiber diameters continued to increase and by 28 days after toxin treatment they attained the same values as fibers in the contralateral soleus. If the muscles were denervated at the time of toxin injection, the early phases of regeneration still took place but the fibers failed to continue to increase in size. Electrophoresis of native myosin showed multiple bands between 3 and 21 days of regeneration which could be interpreted as indicating the presence of embryonic, neonatal, fast and slow myosins in the innervated muscles. Adult slow myosin became the exclusive from in innervated regenerates. In contrast, adult fast myosin became the predominant form in denervated regenerating muscles. Immunocytochemical localization of myosin isozymes demonstrated that in innervated muscles the slow form began to appear in a heterogeneous fashion at about 7 days, and became the major form in all fibers by 21-28 days. Thus, the regenerated muscle was almost entirely composed of slow fibers, in clear contrast to the contralateral muscle which was still substantially mixed. In denervated regenerating muscles, slow myosin was not detected biochemically or immunocytochemically whereas fast myosin was detected in all denervated fibers by 21-28 days. The regenerating soleus muscle therefore is clearly different from the developing soleus muscle in that the former is composed of a uniform fiber population with respect to myosin transitions. Moreover the satellite cells which account for the regeneration process in the soleus muscle do not appear to be predetermined with respect to myosin heavy chain expression, since the fibers they form can express either slow or fast isoforms. The induction of the slow myosin phenotype is entirely dependent on a positive, extrinsic influence of the nerve.  相似文献   

11.
We analyzed the fiber-type composition of the soleus muscle in rats and mice to determine whether the adult proportion of fiber types is fixed soon after birth or whether it changes during postnatal maturation. We examined muscles from animals varying in age from 1 week to 1 year using monoclonal antibodies that distinguish between fast and slow isoforms of myosin heavy chains. In cross sections of unfixed muscle containing profiles of all myofibers in the muscle, we counted the fibers that stained with antibodies to fast myosin, and in adjacent sections, those that stained positive with an antibody to slow myosin. We also counted the total number of fibers in each section. Rat soleus contained about 2500 myofibers, and mouse about 1000 at all ages studied, suggesting that myogenesis ceases in soleus by 1 week after birth or sooner. In mouse soleus, the relative proportions of fibers staining positive with fast and slow myosin antibodies were similar at all ages studied, about 60%–70% being fast and 30%–40% slow. In rat soleus, however, the proportions of fast antibody-positive and slow antibody-positive fibers changed dramatically during postnatal maturation. At 1 week after birth, about 50% of rat soleus fibers stained with fast myosin antibodies, whereas between 1 and 2 months this value fell to about 10%. In mouse, about 10% of fibers at 1 week, but none at 1 year, reacted with both fast and slow antibodies, whereas in rat, fewer than 3% bound both antibodies to a significant degree at 1 week. It is puzzling why, in rat soleus, the majority of apparently fast fibers present at 1 week is converted to a slow phenotype, whereas in mouse soleus the predominant change appears to be the suppression of fast myosin expression in a subset of fibers that expresses both myosin types at 1 week. It is possible that this may be related to differences in size and the amount of body growth between these two species.  相似文献   

12.
We analyzed the fiber-type composition of the soleus muscle in rats and mice to determine whether the adult proportion of fiber types is fixed soon after birth or whether it changes during postnatal maturation. We examined muscles from animals varying in age from 1 week to 1 year using monoclonal antibodies that distinguish between fast and slow isoforms of myosin heavy chains. In cross sections of unfixed muscle containing profiles of all myofibers in the muscle, we counted the fibers that stained with antibodies to fast myosin, and in adjacent sections, those that stained positive with an antibody to slow myosin. We also counted the total number of fibers in each section. Rat soleus contained about 2500 myofibers, and mouse about 1000 at all ages studied, suggesting that myogenesis ceases in soleus by 1 week after birth or sooner. In mouse soleus, the relative proportions of fibers staining positive with fast and slow myosin antibodies were similar at all ages studied, about 60%-70% being fast and 30%-40% slow. In rat soleus, however, the proportions of fast antibody-positive and slow antibody-positive fibers changed dramatically during postnatal maturation. At 1 week after birth, about 50% of rat soleus fibers stained with fast myosin antibodies, whereas between 1 and 2 months this value fell to about 10%. In mouse, about 10% of fibers at 1 week, but none at 1 year, reacted with both fast and slow antibodies, whereas in rat, fewer than 3% bound both antibodies to a significant degree at 1 week. It is puzzling why, in rat soleus, the majority of apparently fast fibers present at 1 week is converted to a slow phenotype, whereas in mouse soleus the predominant change appears to be the suppression of fast myosin expression in a subset of fibers that expresses both myosin types at 1 week. It is possible that this may be related to differences in size and the amount of body growth between these two species.  相似文献   

13.
Single muscle fibers were isolated from soleus and extensor digitorum longus muscle of adult rats. The muscle fiber type of single fibers was determined physiologically by the skinned fiber method according to the sensitivity to strontium (Sr) ions. The fiber type of single fibers was contrasted to the pattern of myosin light chains analyzed by one and two dimensional gel-electrophoreses. All the type 2 fibers isolated from soleus muscle contained both fast and slow types of myosin light chains.  相似文献   

14.
The first sign of developing intrafusal fibers in chicken leg muscles appeared on embryonic day (E) 13 when sensory axons contacted undifferentiated myotubes. In sections incubated with monoclonal antibodies against myosin heavy chains (MHC) diverse immunostaining was observed within the developing intrafusal fiber bundle. Large primary intrafusal myotubes immunostained moderately to strongly for embryonic and neonatal MHC, but they were unreactive or reacted only weakly with antibodies against slow MHC. Smaller, secondary intrafusal myotubes reacted only weakly to moderately for embryonic and neonatal MHC, but 1–2 days after their formation they reacted strongly for slow and slow-tonic MHC. In contrast to mammals, slow-tonic MHC was also observed in extrafusal fibers. Intrafusal fibers derived from primary myotubes acquired fast MHC and retained at least a moderate level of embryonic MHC. On the other hand, intrafusal fibers developing from secondary myotubes lost the embryonic and neonatal isoforms prior to hatching and became slow. Based on relative amounts of embryonic, neonatal and slow MHC future fast and slow intrafusal fibers could be first identified at E14. At the polar regions of intrafusal fibers positions of nerve endings and acetylcholinesterase activity were seen to match as early as E16. Approximately equal numbers of slow and fast intrafusal fibers formed prenatally; however, in postnatal muscle spindles fast fibers were usually in the majority, suggesting that some fibers transformed from slow to fast.  相似文献   

15.
The hypothesis that the accumulation of electron transport system (ETS) abnormalities and sarcopenia are linked was investigated. Vastus lateralis, soleus, and adductor longus muscles were studied in 5-, 18-, and 36-mo-old male Fischer 344 x Brown Norway F(1) hybrid rats. A significant decrease in soleus and vastus lateralis muscle mass was observed with age. Adductor longus was resistant to muscle mass loss. Multiple serial sections were analyzed for the activities of cytochrome-c oxidase (COX) and succinate dehydrogenase (SDH). The number of fibers exhibiting a COX(-)/SDH(++) phenotype increased with age in both vastus lateralis and soleus muscles. No ETS-abnormal fibers were identified in adductor longus at any age. Cross-sectional area of ETS-abnormal fibers decreased in the abnormal region (region displaying COX(-)/SDH(++) phenotype), whereas control fibers did not. The vastus lateralis muscle, which undergoes a high degree of sarcopenia, exhibited more ETS abnormalities and associated fiber loss than the soleus and adductor longus muscles, which are more resistant to sarcopenia, suggesting a direct association between ETS abnormalities and fiber loss.  相似文献   

16.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

17.
Chronic reduction of gravitational load in the rear limbs of rats to simulate the influence of near-zero gravity in skeletal muscles has been shown previously to elicit atrophy in the soleus muscle. Use of this model by the present investigation indicates that soleus atrophy was characterized by a decline in the number of fibers in groups that contained the slow isoenzyme of myosin and which were classified as type I from intensity of staining to myofibrillar actomyosin adenosinetriphosphatase (ATPase) and to NADH tetrazolium reductase. Furthermore total fiber number was not changed, whereas fibers containing the intermediate isoenzyme and those classified as type IIa increased. There results could be explained by either a change in the composition within existing fibers or a simultaneous loss of slow fibers and de novo synthesis of intermediate and fast fibers. Evidence for transformation included an absence of embryonic or neonatal myosin in muscles from suspended rats and the constant fiber number that was unchanged by 4 wk of suspension. Furthermore although fiber areas of both groups of type I and IIa fibers declined during suspension, variability of the fiber areas within each group did not increase.  相似文献   

18.
Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in "slow" muscles such as soleus, as well as in "fast" muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation.  相似文献   

19.
While it recently has been demonstrated that it is possible to modify the phenotypic expression of murine dystrophy (dy/dy) (i.e., prevent myofiber loss) by subjecting the extensor digitorum longus (EDL) muscle of 14-day-old dy/dy mice to transient neonatal denervation (Moschella and Ontell, 1987), the mechanism responsible for this phenomenon has not been determined. Since it has been suggested that the effects of dystrophy vary according to fiber type, the fiber type frequency in 100-day-old normal (+/+) and dy/dy EDL muscles subjected to transient neonatal denervation has been determined by immunohistochemical analysis of their myosin heavy chain (MHC) composition. This frequency has been compared with that found in the EDL muscles of 14- and 100-day-old unoperated +/+ and dy/dy mice, in order to determine whether the reinnervation of transiently denervated neonatal muscle results in a preponderance of fibers of the type that might be spared dystrophic deterioration. In unoperated dy/dy muscle there is a progressive decrease in the frequency and in the absolute number of fibers that express MHC2B, with 100-day-old dy/dy muscles having approximately 32% of the number of myofibers fibers containing MHC2B as is found in age-matched +/+ muscles. The number of fibers containing the other fast isoforms (MHC2A and MHC2X) is similar in +/+ and dy/dy muscles at this age, indicating that fibers with MHC2B are most affected by the dystrophic process. Reinnervation following transient neonatal denervation of both the +/+ and the dy/dy EDL muscles results in a similar decrease (approximately 62%) in the number of myofibers containing MHC2B and an increase in myofibers containing the other fast MHC isoforms (MHC2A and MHC2X). The selective effect of dy/dy on fibers containing MHC2B and the sparing of myofibers in transiently denervated dy/dy muscle (which contains a reduced frequency of fibers containing MHC2B) are consistent with, although not direct proof of, the hypothesis that alterations in the fiber type may play a role in the failure of myofibers in transiently denervated dy/dy muscles to undergo dystrophic deterioration. Evidence is presented suggesting that neurons that supply myofibers containing MHC2B may be at a selective disadvantage in their ability to reinnervate neonatally denervated muscles.  相似文献   

20.
Innervation of regenerated spindles in muscle grafts of the rat   总被引:1,自引:0,他引:1  
Summary Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-m frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type.The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofi-brils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for myofibrillar adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment, of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation.Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号