首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
光是植物光合作用最基本的一个决定因子,准确分析光响应曲线及其参数是研究光合生理生态过程对环境变化响应的重要途径;但相关模型及其模拟的准确性仍待改进。该研究基于C_4作物玉米(Zea mays)不同干旱处理试验资料,比较研究了现有光响应模型(直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型、二次函数模型以及新提出的改进模型)的适应性。结果表明,改进的光响应模型具有较好的精确度,可较准确地描述光响应曲线,也能够准确拟合最大净光合速率、光饱和点、光补偿点以及暗呼吸速率4个关键光合参数。该结果为研究植物光合生理生态过程及其环境适应性提供了一个改进的模拟方法。  相似文献   

2.
羊草叶片气孔导度对环境因子的响应模拟   总被引:31,自引:1,他引:30       下载免费PDF全文
准确定量描述植物气孔对环境的响应是了解植物光合作用机理、预测植物生产力及其大气-植被-土壤系统中水分和热量交换的关键。利用松嫩平原盐碱化草地羊草光合生理特征的野外观测数据,分析了羊草叶片气孔导度对环境因子的反应,结果表明:羊草叶片气孔导度对环境因子变化敏感,尤其对瞬时光合有效辐射(PAR)、叶片与空气间的水汽压亏损(VPD)和空气温度(Ta)反应十分明显。依据野外实测资料对国际上两类代表性气孔导度  相似文献   

3.
以1-2年生北加州黑核桃为试材,建立了具有较高分辨能力的植株群体结构、光分布模型和冠层光合作用模型.将植株冠层按叶面积指数划分为若干层次。上下层之间水平面上太阳辐照度按Monsi&Saeki所提出的指数递减规律分布.冠层内太阳散射光的消光系数由冠层结构决定,而直射光的消光系数则决定于冠层结构与太阳在天空的位置.在同一层次。将叶片的叶倾角划分为6个等级。将叶片的水平位置划分为8个方位.设同一层次中水平面上的太阳辐照度相同。某一方位角和叶倾角的叶面的直接辐射由太阳视运动方程决定.以此为基础,分别计算“光斑区”和“遮荫区”内叶片的光合速率,并通过数值积分计算整个冠层的光合速率及光合日总量.用田间实测资料验证了冠层内太阳辐射分布模型和冠层光合作用模型.敏感性试验分析表明。模型对环境因子和生物学因素有良好的响应.  相似文献   

4.
基于FvCB模型的叶片光合生理对环境因子的响应研究进展   总被引:7,自引:0,他引:7  
唐星林  曹永慧  顾连宏  周本智 《生态学报》2017,37(19):6633-6645
为提高叶片光合速率并更好地理解叶片光合生理对环境因子变化的响应机制,FvCB模型(C_3植物光合生化模型)常用于分析不同环境条件下CO_2响应曲线并预测叶片活体内光合系统的内在变化状况。系统介绍了FvCB模型的建立、发展过程和拟合方法等基本理论,综述了该模型在叶片光合生理对光、CO_2、水、温度和N营养等环境因子变化的响应机制中的应用研究。为进一步完善FvCB模型并更好地理解叶片活体内光合系统对环境因子变化的响应机制,未来拟加强以下研究:1)羧化速率与光合电子传递速率之间的联系;2)叶肉导度的具体组分及其对FvCB模型参数估计的影响;3)叶片气孔导度和叶肉导度对环境因子变化的调控机制。  相似文献   

5.
蒙古栎(Quercus mongolica)光合参数对水分胁迫的响应机理   总被引:2,自引:0,他引:2  
曾伟  蒋延玲  李峰  周广胜   《生态学报》2008,28(6):2504-2504~2510
针对当前植物光合机理模型中植物光合参数没有考虑干旱胁迫影响的不足,以东北地区蒙古栎为研究对象,基于蒙古栎对不同水分响应的植物生理生态模拟试验,探讨了蒙古栎光合参数对水分胁迫的定量响应.结果表明,水分胁迫严重影响蒙古栎叶片的光合参数.其最大净光合速率(Pmax)与土壤含水量呈抛物线关系(P<0.01),且在土壤体积含水量35.45%(相当于土壤质量含水量23.63%)接近田间持水量(27.4%)时达到最大值.蒙古栎幼苗叶片的最大羧化速率(Vcmax)、最大电子传递速率(Jmax)和磷酸丙糖利用率(TPU)均与土壤水分呈抛物线关系(P<0.01),即Vcmax、Jmax 、TPU对土壤水分具有相同的响应趋势,但各光合参数达到最大时的土壤水分阈值却不相同.同时,基于蒙古栎光合作用参数对水分变化响应的定量分析,建立了水热因子协同影响的植物光合参数模型,为最终建立适用于所有植物的水热因子协同影响的光合参数模型提供了依据与技术示范.  相似文献   

6.
水稻光合生产与干物质累积的动态模拟   总被引:15,自引:0,他引:15  
在综合已有研究成果的基础上,兼顾模型的机理性与实用性的平衡,构建了水稻光合生产与干物质累积的模拟模型.模型采用高斯积分法有效地计算冠层每日的总光合量,并考虑了冠层消光系数随生理发育时间(PDT)的动态变化,模型较充分地量化了生理年龄、温度、叶片含氮量及水分亏缺因子等对光合作用的影响及维持呼吸系数与PDT的动态变化关系、利用独立的试验资料对模型核实的结果显示,模型可以较好地预测不同生长条件下的生物量累积动态,具有较强的机理性与实用性.  相似文献   

7.
以叶片的气体传输过程为基础,将蒸腾作用包括在以往光合作用气孔导度的耦合模型中,建立了光合作用蒸腾作用气孔导度的耦合模型。该模型可以模拟边界层导度对生理过程的影响。模拟了C3植物叶片对环境因子,如光照、温度、湿度、边界层导度和CO2浓度等的生理响应(光合作用、蒸腾作用、气孔导度)以及Ci和水分利用效率的变化。在环境因子变化于较大范围的情况下,模拟结果符合许多实验结论。  相似文献   

8.
以叶片的气体传输过程为基础,将蒸腾作用包括在以往光合作用-气孔导度的耦合模型中,建立了光合作用-蒸腾作用-气孔导度的耦合模型。该模型可以模拟边界层导度对生理过程的影响。模拟了C3植物叶片对环境因子,如光照、温度、湿度、边界层导度和CO2浓度等的生理响应(光合作用、蒸腾作用、气孔导度)以及Ci和水分利用效率的变化。在环境因子变化于较大范围的情况下,模拟结果符合许多实验结论。  相似文献   

9.
在半干旱黄土丘陵区,以2年生盆栽山杏为材料,应用CIRAS-2型光合作用系统,测定了8个土壤水分梯度下山杏光合作用的CO2响应过程,并采用直角双曲线模型、指数方程和直角双曲线修正模型对其CO2响应数据进行拟合,分析了山杏光合作用与土壤水分的定量关系.结果表明:山杏CO2响应过程对土壤水分有明显的阈值响应特征.维持山杏叶片较高的光合速率(Pn)和羧化效率(CE)的土壤相对含水量(RWC)在46.3%~81.9%,在此水分范围内,光合作用没有发生明显的CO2饱和抑制现象;当RWC超出此范围,土壤水分升高或降低均明显降低山杏叶片的光合能力(Pnmax)、CE和CO2饱和点(CSP).在不同土壤水分条件下,3个模型对山杏CO2响应数据的模拟效果有明显差别.在46.3%~81.9%土壤水分范围内,3个模型均能较好地拟合山杏CO2响应过程及其特征参数CE、CO2补偿点(Γ)和光呼吸速率(Rp),其拟合精度均表现为直角双曲线修正模型>指数方程>直角双曲线模型;当土壤水分含量过高(RWC>81.9%)或过低(RWC<46.3%)时,只有直角双曲线修正模型能较好地拟合山杏CO2响应过程及其特征参数.RWC在46.3% ~81.9%范围内,山杏具有较高的光合作用效率;与传统直角双曲线模型和指数方程相比,直角双曲线修正模型具有更好的适用性.  相似文献   

10.
罗紫东  关华德  章新平  刘娜 《生态学杂志》2016,27(10):3129-3136
利用Li-6400XT便携式光合作用测定系统,于2014年10—12月测定枫香叶片衰老过程中光合作用光响应曲线,采用叶氏模型和非直角双曲线模型进行模拟,分析枫香叶片衰老过程中光合能力的变化.结果表明: 随着枫香叶片逐渐变黄变红,其净光合速率的光响应能力逐渐降低,实测的最大净光合速率从叶片开始泛黄时的2.88 μmol CO2·m-2·s-1下降到叶片衰老后期(12月8日)的0.95 μmol CO2·m-2·s-1.2种光响应模型均较好地模拟了观测的光响应数据,其中叶氏模型表现更优.模拟得到的最大净光合速率、表观量子效率、光补偿点的量子效率、暗呼吸速率等参数均随枫香叶片衰老凋落而逐渐下降,反映出枫香叶片衰老过程中光合能力缓慢下降的过程.在树梢红叶未落期间,枫香叶片仍具有一定的净光合作用能力,这有利于增加秋冬季节的碳吸收量.  相似文献   

11.
The model RATP (radiation absorption, transpiration and photosynthesis) is presented. The model was designed to simulate the spatial distribution of radiation and leaf-gas exchanges within vegetation canopies as a function of canopy structure, canopy microclimate within the canopy and physical and physiological leaf properties. The model uses a three-dimensional (3D) representation of the canopy (i.e. an array of 3D cells, each characterized by a leaf area density). Radiation transfer is computed by a turbid medium analogy, transpiration by the leaf energy budget approach, and photosynthesis by the Farquhar model, each applied for sunlit and shaded leaves at the individual 3D cell-scale. The model typically operates at a 20–30 min time step. The RATP model was applied to an isolated, 20-year-old walnut tree grown in the field. The spatial distribution of wind speed, stomatal response to environmental variables, and light acclimation of leaf photosynthetic properties were taken into account. Model outputs were compared with data acquired in the field. The model was shown to simulate satisfactorily the intracrown distribution of radiation regime, transpiration and photosynthetic rates, at shoot or branch scales.  相似文献   

12.
A model of dynamics of leaves and nitrogen is developed to predict the effect of environmental and ecophysiological factors on the structure and photosynthesis of a plant canopy. In the model, leaf area in the canopy increases by the production of new leaves, which is proportional to the canopy photosynthetic rate, with canopy nitrogen increasing with uptake of nitrogen from soil. Then the optimal leaf area index (LAI; leaf area per ground area) that maximizes canopy photosynthesis is calculated. If leaf area is produced in excess, old leaves are eliminated with their nitrogen as dead leaves. Consequently, a new canopy having an optimal LAI and an optimal amount of nitrogen is obtained. Repeating these processes gives canopy growth. The model provides predictions of optimal LAI, canopy photosynthetic rates, leaf life span, nitrogen use efficiency, and also the responses of these factors to changes in nitrogen and light availability. Canopies are predicted to have a larger LAI and a higher canopy photosynthetic rate at a steady state under higher nutrient and/or light availabilities. Effects of species characteristics, such as photosynthetic nitrogen use efficiency and leaf mass per area, are also evaluated. The model predicts many empirically observed patterns for ecophysiological traits across species.  相似文献   

13.
Photosynthetic capacity is one of the most sensitive parameters in vegetation models and its relationship to leaf nitrogen content links the carbon and nitrogen cycles. Process understanding for reliably predicting photosynthetic capacity is still missing. To advance this understanding we have tested across C(3) plant species the coordination hypothesis, which assumes nitrogen allocation to photosynthetic processes such that photosynthesis tends to be co-limited by ribulose-1,5-bisphosphate (RuBP) carboxylation and regeneration. The coordination hypothesis yields an analytical solution to predict photosynthetic capacity and calculate area-based leaf nitrogen content (N(a)). The resulting model linking leaf photosynthesis, stomata conductance and nitrogen investment provides testable hypotheses about the physiological regulation of these processes. Based on a dataset of 293 observations for 31 species grown under a range of environmental conditions, we confirm the coordination hypothesis: under mean environmental conditions experienced by leaves during the preceding month, RuBP carboxylation equals RuBP regeneration. We identify three key parameters for photosynthetic coordination: specific leaf area and two photosynthetic traits (k(3), which modulates N investment and is the ratio of RuBP carboxylation/oxygenation capacity (V(Cmax)) to leaf photosynthetic N content (N(pa)); and J(fac), which modulates photosynthesis for a given k(3) and is the ratio of RuBP regeneration capacity (J(max)) to V(Cmax)). With species-specific parameter values of SLA, k(3) and J(fac), our leaf photosynthesis coordination model accounts for 93% of the total variance in N(a) across species and environmental conditions. A calibration by plant functional type of k(3) and J(fac) still leads to accurate model prediction of N(a), while SLA calibration is essentially required at species level. Observed variations in k(3) and J(fac) are partly explained by environmental and phylogenetic constraints, while SLA variation is partly explained by phylogeny. These results open a new avenue for predicting photosynthetic capacity and leaf nitrogen content in vegetation models.  相似文献   

14.
A mathematical model of leaf photosynthesis has been established. In this model, the processes of photosynthesis are divided into two parts, ie., the carboxylation process driven by light which is dependent on temperature and CO2 concentration, and the diffusion of CO2 from atmosphere to the carboxylation site. Finatly, CO2 uptake by the leaf is understood as dependent on 1), the CO2 response curve of the leaf mesophyll and 2). the CO2 partial pressure in the intercellular space in leaf. The COs response curve of the leaf photosynthesis is described mathematically in terms of carboxylation efficiency (Ca) or its initial slope and the photosynthetic capacity (Pm) or the CO2-saturated uptake rate of CO2 uptake, and dark respiration (Rd). The dependency of photosynthesis on leaf temperature and incident light intensity is incorporated into variations of those parameters which establish an appropriate response to internal CO2 pressure for particular light and temperature conditions prevailing at any time. Secondly the interactiion of stomata with photosynthesis is represented as an empirical relation between stomatal conductance and a combined environmental physiological index, APn·Hx/CaThe parameters used in the modelwere estimated with Marquardt-Newton method for non-linear function. Field measurements of mulberry leaf photosynthesis provided a data set for model testing. The resuks show that the simulated values of the model agree well with observed data. The model was used to analyse the response surface of leaf conductance and photosynthesis to environmental factors—Applications and limitations of the model are discussed  相似文献   

15.
本文根据Wang和BMdocchi(1989)最近提出的冠层辐射模型,进一步给出了一个模拟冠层光合作用速率和气孔传导率的模式.模式将冠层中每一层的叶面积分为向光叶、半影叶、和全遮荫叶三种,并分别计算其光合作用速率和气孔传导率。计算得到的光合速率廓线表明,在落叶阔叶林内,冠层下部的叶片常处于光照不足状态;半影效应使得透过林冠达于底部的辐射量增大,这对于林下植物的光合作用是有利的。 模式计算值与实测值之间的微弱差别应归因于纯辐射模型无法考虑湍流输送机制造成的CO_2传输和冠层底部耐荫性叶对于低光照的适应能力。  相似文献   

16.
甜瓜幼苗叶片光合变化特性   总被引:3,自引:1,他引:2  
为探讨甜瓜光响应变化特性与环境因子的关系,选择光响应曲线适宜测定的时段,以甜瓜幼苗为试材,将1 d分为3个时段:10:00-12:00、12:00-15:00和15:00-17:00,每个叶位叶片测定1 d,并采用直角双曲线修正模型拟合光响应曲线,研究不同时段下甜瓜叶片光响应曲线、光响应参数的变化趋势和不同叶位叶片光响应参数特性。结果表明:当环境中光合有效辐射增强,叶面温度(Tl)升高,空气相对湿度(RH)降低;当环境中光合有效辐射减弱,Tl降低,RH升高。10:00-12:00光响应曲线和12:00-15:00的第1-4叶光响应曲线呈双曲线,在强光下趋向饱和状况,12:00-15:00的第5叶光合速率和15:00-17:00光合速率在强光下出现明显的光抑制现象。1 d的不同时段均表现为10:00-12:00最大净光合速率(Pmax)和光饱和点(LSP)最高,12:00-17:00降低;12:00-15:00光补偿点(LCP)和暗呼吸速率(Rd)较高,其它两个时段较低,10:00-17:00光补偿点量子效率(φc)、气孔导度(Gs)和胞间CO2浓度(Ci)总体呈降低趋势,气孔限制值(Ls)升高。10:00-15:00相同时段测得的不同叶位叶片光响应参数,以第4-5叶光合性能较好,15:00-17:00以第3叶Pmax最高,第5叶次之;10:00-17:00 GsCi以第5叶较低,第1叶较高,Ls以第5叶较高,第1叶较低。RH为影响Pmax的主要决策因子,测定时段、叶面饱和蒸汽压亏缺(Vpdl)和Tl为主要限制因子。10:00-12:00适宜进行光响应曲线测定,气孔限制为不同时段光合作用不同的主要因素,非气孔限制为影响不同叶位叶片光合作用的主要因素。  相似文献   

17.
The individual plant of Chinese ivy can produce three types of branches (creepy, climbing, and reproductive) during its development, which adapt to different environmental factors. An eco-physiological model was constructed to simulate leaf net photosynthetic rate (P N) of Chinese ivy (Hedera nepalensis var. sinensis) in subtropical evergreen broad-leaved forest based on leaf physiological and mathematical analysis. The model integrated the rate-limiting biochemical process of photosynthesis and the processes of stomatal regulation. Influence of environmental factors (solar radiation, temperature, CO2 concentration, vapour pressure deficit, etc.) on P N was also considered in our model; its parameters were estimated for leaves on three types of branch in the whole growing season. The model was validated with field data. The model could simulate P N of leaf on three types of branches accurately. Influence of solar radiation on leaf P N of three types of branches in different seasons was analyzed through the model with numerical analysis.  相似文献   

18.
松嫩草地羊草叶片光合作用生理生态特征分析   总被引:46,自引:10,他引:36  
对松嫩平原盐碱化草地羊草叶片的光合生理生态特征分析表明,晴朗天气条件下,羊草叶片净光合速率日变化呈双峰型,蒸腾速率属单峰型,叶片的净光合速率、蒸腾速率及气孔阻力在整个生长季受到多个环境因子的共同影响,不同时期起主导作用的环境因子有所差异,同一环境因子在不同时间对净光合速率、蒸腾速率及气孔阻力的影响程度不同,净光合有效国徽是对羊草光合作用影响最为强烈的环境因子,受环境因子控制最为显著的生理特征是羊草叶片的蒸腾速度。  相似文献   

19.
BACKGROUND AND AIMS: In a leaf canopy, there is a turnover of leaves; i.e. they are produced, senesce and fall. These processes determine the amount of leaf area in the canopy, which in turn determines canopy photosynthesis. The turnover rate of leaves is affected by environmental factors and is different among species. This mini-review discusses factors responsible for leaf dynamics in plant canopies, focusing on the role of nitrogen. SCOPE: Leaf production is supported by canopy photosynthesis that is determined by distribution of light and leaf nitrogen. Leaf nitrogen determines photosynthetic capacity. Nitrogen taken up from roots is allocated to new leaves. When leaves age or their light availability is lowered, part of the leaf nitrogen is resorbed. Resorbed nitrogen is re-utilized in new organs and the rest is lost with dead leaves. The sink-source balance is important in the regulation of leaf senescence. Several models have been proposed to predict response to environmental changes. A mathematical model that incorporated nitrogen use for photosynthesis explained well the variations in leaf lifespan within and between species. CONCLUSION: When leaf turnover is at a steady state, the ratio of biomass production to nitrogen uptake is equal to the ratio of litter fall to nitrogen loss, which is an inverse of the nitrogen concentration in dead leaves. Thus nitrogen concentration in dead leaves (nitrogen resorption proficiency) and nitrogen availability in the soil determine the rate of photosynthesis in the canopy. Dynamics of leaves are regulated so as to maximize carbon gain and resource-use efficiency of the plant.  相似文献   

20.
Atanasova  L.  Stefanov  D.  Yordanov  I.  Kornova  K.  Kavardzikov  L. 《Photosynthetica》2003,41(2):289-292
Pendulum walnut leaves exhibited various adaptive responses related to the regulation of photon interception such as specific downward orientation, greater leaf area, and larger pigment pool. Changes in the regulation of PS2 such as higher thermal dissipation (NPQ) and lower quantum efficiency (ΦPS2) that protect the photosynthetic apparatus against damages were also found. The growth and photosynthetic features of pendulum walnut leaf are interpreted as adaptations that allow the pendulum walnut tree to compensate the impaired ability by appropriate growth to ensure the energy needs for photosynthesis, respectively for biomass formation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号